One pot green synthesis of graphene-iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance

被引:32
作者
Dey, Abhijit [1 ]
Panja, Sudipta [2 ]
Sikder, Arun Kanti [1 ]
Chattopadhyay, Santanu [2 ]
机构
[1] Def Res & Dev Org, High Energy Mat Res Lab, Pune 411021, Maharashtra, India
[2] Indian Inst Technol, Rubber Technol Ctr, Kharagpur 721302, W Bengal, India
关键词
LITHIUM-ION BATTERIES; THERMAL-CONDUCTIVITY; POLYMER NANOCOMPOSITES; ORGANIC COMPOSITES; CARBON NANOTUBES; POWER FACTORS; POLYANILINE; FILMS; TRANSPORT; NANOSHEETS;
D O I
10.1039/c4ra14655g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report for the first time, a green method for graphene-iron oxide nanocomposite (GINC) synthesis by dispersing graphene and nano iron oxide (Fe2O3) in ethanol via ultrasonication followed by micro-wave irradiation. This is a simple method of making a broader range of graphene-metal oxide nanocomposites with excellent dispersion of 3D nanoparticles over 2D graphene. In addition, we have also demonstrated the synthesis of highly conductive PVAc-GINC and PVAc-graphene composites by ultrasonication followed by hot compaction for thermoelectric application. Graphene and GINC concentration were judiciously varied and optimized for the sake of high electrical conductivity and Seebeck coefficient. The fabricated PVAc-GINC film exhibited a conductivity of 2.18 x 10(4) S m(-1) with a Seebeck coefficient of 38.8 mVK(-1). Hence, the power factor (PF) reaches 32.90 mu Wm(-1) K-2, which is 27 fold higher than the thermoelectric material based on PVAc-graphene composite. This PF value is found to be the maximal ever reported without using conducting polymer.
引用
收藏
页码:10358 / 10364
页数:7
相关论文
共 57 条
[1]   Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives [J].
Aich, Reda Badrou ;
Blouin, Nicolas ;
Bouchard, Angelique ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2009, 21 (04) :751-757
[2]   Thermoelectric properties of Ag-doped Cu2Se and Cu2Te [J].
Ballikaya, Sedat ;
Chi, Hang ;
Salvador, James R. ;
Uher, Ctirad .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12478-12484
[3]   Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys [J].
Basu, Ranita ;
Bhattacharya, Shovit ;
Bhatt, Ranu ;
Roy, Mainak ;
Ahmad, Sajid ;
Singh, Ajay ;
Navaneethan, M. ;
Hayakawa, Y. ;
Aswal, D. K. ;
Gupta, S. K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (19) :6922-6930
[4]   Bottom-up solution chemistry approaches for nanostructured thermoelectric materials [J].
Benoit, Roland ;
Hornebecq, Virginie ;
Weill, Francois ;
Lecren, Lollita ;
Bourrat, Xavier ;
Treguer-Delapierre, Mona .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) :14221-14226
[5]   Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor [J].
Bounioux, Celine ;
Diaz-Chao, Pablo ;
Campoy-Quiles, Mariano ;
Martin-Gonzalez, Marisol S. ;
Goni, Alejandro R. ;
Yerushalmi-Rozene, Rachel ;
Mueller, Christian .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :918-925
[6]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[7]   Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide [J].
Bux, Sabah K. ;
Yeung, Michael T. ;
Toberer, Eric S. ;
Snyder, G. Jeffrey ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12259-12266
[8]   Highly Doped Carbon Nanotubes with Gold Nanoparticles and Their Influence on Electrical Conductivity and Thermopower of Nanocomposites [J].
Choi, Kyungwho ;
Yu, Choongho .
PLOS ONE, 2012, 7 (09)
[9]   THERMAL-CONDUCTIVITY OF POLYMERS [J].
CHOY, CL .
POLYMER, 1977, 18 (10) :984-1004
[10]   Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite [J].
Du, Yong ;
Shen, Shirley Z. ;
Yang, Weidong ;
Donelson, Richard ;
Cai, Kefeng ;
Casey, Philip S. .
SYNTHETIC METALS, 2012, 161 (23-24) :2688-2692