Prediction for magnetostriction magnetorheological foam using machine learning method

被引:3
作者
Rohim, Muhamad Amirul Sunni [1 ]
Nazmi, Nurhazimah [1 ]
Bahiuddin, Irfan [2 ]
Mazlan, Saiful Amri [1 ]
Norhaniza, Rizuan [1 ]
Yamamoto, Shin-ichiroh [3 ]
Nordin, Nur Azmah [1 ]
Aziz, Siti Aishah Abdul [4 ]
机构
[1] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur, Malaysia
[2] Univ Gadjah Mada, Vocat Coll, Mech Engn Dept, Yogyakarta, Indonesia
[3] Shibaura Inst Technol, Dept Biosci & Engn, Saitama, Japan
[4] Univ Teknol MARA Pahang, Fac Appl Sci, Pahang, Malaysia
关键词
hyperparameters; machine learning; magnetic polymer composite; magnetorheological foam; magnetostriction;
D O I
10.1002/app.52798
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Magnetorheological (MR) foam is a magnetic polymer composite (MPC) that can be used for soft sensors and actuators in soft robotics. Modeling mechanical properties and magnetostriction behavior of MR foam is critical to developing into MR foam devices. This study uses extreme learning machines (ELM) and artificial neural networks (ANN) to predict magnetostriction behavior. These models describe the nonlinear relationship between different carbonyl iron particle compositions, magnetic field, strain, and normal force. The model's hyperparameters (learning algorithms and activation functions) are varied. For ANN, RMSProp, and ADAM learning algorithms were used with sigmoid and ReLU activation functions. The ELM model considered the Hard limit, ReLU, and sigmoid activation function. The model was then evaluated for both training and testing data. Based on the results, ANN RMSProp Sigmoid, ELM with activation function ReLU, and Hard limit are more accurate than other models. However, the correlation analysis and comparison between prediction and experimental data show ELM Hard limit are more generalized in predicting strain and normal force with R2$$ {\mathrm{R}}<^>2 $$, 0.999, and RMSE less than 0.002. In conclusion, the ELM Hard limit model accurately predicts the magnetostriction behavior of MR foam, paving the way for future MR foam device development.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Evaluating the performance of Extreme Learning Machine technique for ore grade estimation [J].
Abuntori, Clara Akalanya ;
Al-Hassan, Sulemana ;
Mireku-Gyimah, Daniel ;
Ziggah, Yao Yevenyo .
JOURNAL OF SUSTAINABLE MINING, 2021, 20 (02) :56-71
[2]  
Amarís M, 2016, 15TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (IEEE NCA 2016), P326, DOI 10.1109/NCA.2016.7778637
[3]   Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method [J].
Bahiuddin, Irfan ;
Wahab, Nurul A. A. ;
Shapiai, Mohd I. ;
Mazlan, Saiful A. ;
Mohamad, Norzilawati ;
Imaduddin, Fitrian ;
Ubaidillah .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (11) :1727-1742
[4]   A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method [J].
Bahiuddin, Irfan ;
Mazlan, Saiful A. ;
Shapiai, Mohd. I. ;
Choi, Seung-Bok ;
Imaduddin, Fitrian ;
Rahman, Mohd. A. A. ;
Ariff, Mohd. H. M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 281 :209-221
[5]   GENERALIZED INVERSE OF MATRICES AND ITS APPLICATIONS - RAO,CR AND MITRA,SK [J].
BANERJEE, KS .
TECHNOMETRICS, 1973, 15 (01) :197-197
[6]  
Bira N., 2020, SOFT ROBOT, V7, P1
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]   How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics [J].
Cao, Bing ;
Adutwum, Lawrence A. ;
Oliynyk, Anton O. ;
Luber, Erik J. ;
Olsen, Brian C. ;
Mar, Arthur ;
Buriak, Jillian M. .
ACS NANO, 2018, 12 (08) :7434-7444
[9]   Efficient Hardware Implementation of DNN-Based Speech Enhancement Algorithm With Precise Sigmoid Activation Function [J].
Chiluveru, Samba Raju ;
Gyanendra ;
Chunarkar, Snehit ;
Tripathy, Manoj ;
Kaushik, Brajesh Kumar .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (11) :3461-3465
[10]   Magnetic field-responsive smart polymer composites [J].
Filipcsei, Genoveva ;
Csetneki, Ildiko ;
Szilagyi, Andras ;
Zrinyi, Miklos .
OLIGOMERS POLYMER COMPOSTIES MOLECULAR IMPRINTING, 2007, 206 :137-189