Robust small area estimation in generalized linear mixed models

被引:3
作者
Sinha, Sanjoy K. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
来源
METRON-INTERNATIONAL JOURNAL OF STATISTICS | 2019年 / 77卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Categorical data; Mixed model; Robust estimation; Small area prediction; Mean squared prediction error; PREDICTION; INFERENCE; ERROR;
D O I
10.1007/s40300-019-00161-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Small area estimation with categorical outcomes often requires intensive computation, as the marginal likelihood does not have a closed form in general. The likelihood analysis is further complicated by deviations in distributional assumptions often arise through outliers in the data. In this paper, the author proposes a robust method for estimating the small area parameters. Finite-sample properties of the estimators are investigated using Monte Carlo simulations. The empirical study shows that the proposed robust method is very useful for bounding the influence of outliers on the small area estimators. To approximate the mean squared errors of the estimators, a parametric bootstrap method is adopted. An application is also provided using actual data from a public health survey.
引用
收藏
页码:201 / 225
页数:25
相关论文
共 25 条
[1]  
[Anonymous], 2015, Statistics in Transition New Series
[2]   AN ERROR-COMPONENTS MODEL FOR PREDICTION OF COUNTY CROP AREAS USING SURVEY AND SATELLITE DATA [J].
BATTESE, GE ;
HARTER, RM ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :28-36
[3]   Robust inference for generalized linear models [J].
Cantoni, E ;
Ronchetti, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1022-1030
[4]   M-quantile models for small area estimation [J].
Chambers, Ray ;
Tzavidis, Nikos .
BIOMETRIKA, 2006, 93 (02) :255-268
[5]   On measuring the variability of small area estimators under a basic area level model [J].
Datta, GS ;
Rao, JNK ;
Smith, DD .
BIOMETRIKA, 2005, 92 (01) :183-196
[6]   Generalized linear models for small-area estimation [J].
Ghosh, M ;
Natarajan, K ;
Stroud, TWF ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) :273-282
[7]  
GHOSH M, 1992, BAYESIAN ANAL STAT E, P107
[8]   On parametric bootstrap methods for small area prediction [J].
Hall, P ;
Maiti, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :221-238
[9]   Mixed model prediction and small area estimation [J].
Jiang, Jiming ;
Lahiri, P. .
TEST, 2006, 15 (01) :1-59
[10]   A unified jackknife theory for empirical best prediction with M-estimation [J].
Jiang, JM ;
Lahiri, P ;
Wan, SM .
ANNALS OF STATISTICS, 2002, 30 (06) :1782-1810