Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices

被引:11
|
作者
Pennisi, Andrea [1 ]
Bloisi, Domenico D. [2 ]
Suriani, Vincenzo [3 ]
Nardi, Daniele [3 ]
Facchiano, Antonio [4 ]
Giampetruzzi, Anna Rita [4 ]
机构
[1] Univ Antwerp, Dept Comp Sci, Antwerp, Belgium
[2] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
[3] Sapienza Univ Rome, Dept Comp Sci Control & Management Engn, Rome, Italy
[4] Ist Dermopat Immacolata IDI IRCCS, Rome, Italy
基金
英国科研创新办公室;
关键词
Melanoma detection; Image segmentation; Deep learning; NETWORKS;
D O I
10.1007/s10278-022-00634-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant lesions is crucial for reducing mortality. The use of deep learning techniques on dermoscopic images can help in keeping track of the change over time in the appearance of the lesion, which is an important factor for detecting malignant lesions. In this paper, we present a deep learning architecture called Attention Squeeze U-Net for skin lesion area segmentation specifically designed for embedded devices. The main goal is to increase the patient empowerment through the adoption of deep learning algorithms that can run locally on smartphones or low cost embedded devices. This can be the basis to (1) create a history of the lesion, (2) reduce patient visits to the hospital, and (3) protect the privacy of the users. Quantitative results on publicly available data demonstrate that it is possible to achieve good segmentation results even with a compact model.
引用
收藏
页码:1217 / 1230
页数:14
相关论文
共 50 条
  • [41] Mosaic Images Segmentation using U-net
    Fenu, Gianfranco
    Medvet, Eric
    Panfilo, Daniele
    Pellegrino, Felice Andrea
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 485 - 492
  • [42] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) : 1459 - 1467
  • [43] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [44] MADRU-Net: Multiscale Attention-Based Cardiac MRI Segmentation Using Deep Residual U-Net
    Singh, Kamal Raj
    Sharma, Ambalika
    Singh, Girish Kumar
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 (1-13) : 1 - 13
  • [45] Enhanced damage segmentation in RC components using pyramid Haar wavelet downsampling and attention U-net
    Wang, Wentao
    Li, Lei
    Qu, Zhe
    Yang, Xiaoli
    AUTOMATION IN CONSTRUCTION, 2024, 168
  • [46] Acral melanocytic lesion segmentation with a convolution neural network (U-Net)
    Jaworek-Korjakowska, Joanna
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [47] Automated Segmentation of Acute Ischemic Stroke Using Attention U-Net with Patch Mechanism
    Cinar, Necip
    Ucan, Murat
    Kaya, Buket
    Kaya, Mehmet
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2025, 25 (01) : 29 - 42
  • [48] Automated detection and segmentation of pleural effusion on ultrasound images using an Attention U-net
    Huang, Libing
    Lin, Yingying
    Cao, Peng
    Zou, Xia
    Qin, Qian
    Lin, Zhanye
    Liang, Fengting
    Li, Zhengyi
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (01):
  • [49] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [50] IRAU-Net: Inception Residual Attention U-Net in Adversarial Network for Cardiac MRI Segmentation
    Rostami, Maryam Talebi
    Motamedi, Seyed Ahmad
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2025, 19 (01) : 260 - 272