Artificial intelligence in the clinical setting Towards actual implementation of reliable outcome predictions

被引:3
作者
Vistisen, Simon Tilma [1 ,2 ]
Pollard, Tom Joseph [3 ]
Harris, Steve [4 ,5 ]
Lauritsen, Simon Meyer [6 ]
机构
[1] Aarhus Univ, Inst Clin Med, Aarhus, Denmark
[2] Aarhus Univ Hosp, Dept Anaesthesiol & Intens Care, Aarhus, Denmark
[3] MIT, Lab Computat Physiol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Coll London Hosp, Dept Crit Care, London, England
[5] UCL, Inst Hlth Informat, London, England
[6] Enversion AS, Aarhus, Denmark
关键词
D O I
10.1097/EJA.0000000000001696
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
[No abstract available]
引用
收藏
页码:729 / 732
页数:4
相关论文
共 18 条
  • [1] Biases in electronic health record data due to processes within the healthcare system: retrospective observational study
    Agniel, Denis
    Kohane, Isaac S.
    Weber, Griffin M.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2018, 361
  • [2] The impact of machine learning on patient care: A systematic review
    Ben-Israel, David
    Jacobs, W. Bradley
    Casha, Steve
    Lang, Stefan
    Ryu, Won Hyung A.
    de Lotbiniere-Bassett, Madeleine
    Cadotte, David W.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103 (103)
  • [3] A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
    Christodoulou, Evangelia
    Ma, Jie
    Collins, Gary S.
    Steyerberg, Ewout W.
    Verbakel, Jan Y.
    Van Calster, Ben
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 : 12 - 22
  • [4] Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
    Collins, Gary S.
    Dhiman, Paula
    Andaur Navarro, Constanza L.
    Ma, Ji
    Hooft, Lotty
    Reitsma, Johannes B.
    Logullo, Patricia
    Beam, Andrew L.
    Peng, Lily
    Van Calster, Ben
    van Smeden, Maarten
    Riley, Richard D.
    Moons, Karel G. M.
    [J]. BMJ OPEN, 2021, 11 (07):
  • [5] Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration
    Escobar, Gabriel J.
    Liu, Vincent X.
    Schuler, Alejandro
    Lawson, Brian
    Greene, John D.
    Kipnis, Patricia
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (20) : 1951 - 1960
  • [6] Johnson Alistair E.W., 2017, P 2 MACHINE LEARNING, V68, P361
  • [7] Label, Segment, Featurize: a cross domain framework for prediction engineering
    Kanter, James Max
    Gillespie, Owen
    Veeramachaneni, Kalyan
    [J]. PROCEEDINGS OF 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, (DSAA 2016), 2016, : 430 - 439
  • [8] Key challenges for delivering clinical impact with artificial intelligence
    Kelly, Christopher J.
    Karthikesalingam, Alan
    Suleyman, Mustafa
    Corrado, Greg
    King, Dominic
    [J]. BMC MEDICINE, 2019, 17 (01)
  • [9] Kyono T, 2021, MIRACLE CAUSALLY AWA
  • [10] The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
    Lauritsen, Simon Meyer
    Thiesson, Bo
    Jorgensen, Marianne Johansson
    Riis, Anders Hammerich
    Espelund, Ulrick Skipper
    Weile, Jesper Bo
    Lange, Jeppe
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)