Pseudoconvexity and Gromov hyperbolicity

被引:9
作者
Balogh, ZM
Bonk, M
机构
[1] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
[2] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 07期
关键词
D O I
10.1016/S0764-4442(99)80253-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an estimate for the distance functions related to the Bergman, Caratheodory, and Kobayashi metrics on a bounded strictly pseudoconvex domain with C-2-smooth boundary. Our formula relates the distance function on the domain with the Carnot-Caratheodory metric on the boundary. As a corollary we conclude that the domain equipped with the any of the standard invariant distances is hyperbolic in the sense of Gromov. When the boundary of the domain is C-3-smooth, our estimate is exact up to a fixed additive term. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:597 / 602
页数:6
相关论文
共 9 条
[1]   DEGENERATE ELLIPTIC-OPERATORS, HARDY-SPACES AND DIFFUSIONS ON STRONGLY PSEUDOCONVEX DOMAINS [J].
ARAI, H .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (04) :469-498
[2]  
BONK M, IN PRESS GEOM FUNC A
[3]   FIRST AND SECOND DERIVATIVES OF BERGMAN KERNEL FUNCTION AND THEIR BOUNDARY BEHAVIOR [J].
DIEDERICH, K .
MATHEMATISCHE ANNALEN, 1973, 203 (02) :129-170
[4]   BERGMAN KERNEL AND BIHOLOMORPHIC MAPPINGS OF PSEUDOCONVEX DOMAINS [J].
FEFFERMAN, C .
INVENTIONES MATHEMATICAE, 1974, 26 (01) :1-65
[5]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [10.1007/978-1-4613-9586-7_3, DOI 10.1007/978-1-4613-9586-7_3]
[6]  
Gromov M., 1996, Sub-Riemannian geometry, V144, P79, DOI DOI 10.1007/978-3-0348-9210-0_2
[7]   BOUNDARY-BEHAVIOR OF INVARIANT METRICS AND VOLUME FORMS ON STRONGLY PSEUDOCONVEX DOMAINS [J].
MA, DW .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :673-697
[8]  
NAGEL S, 1985, ACTA MATH, V155, P102
[9]  
[No title captured]