Generalized q-dimension of measures on Heisenberg self-affine sets in the Heisenberg group

被引:0
作者
Miao, Jun Jie [1 ]
Wu, Xiaonan [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
self-affine; generalized q-dimension; Heisenberg group; SINGULARITY SPECTRUM; HAUSDORFF DIMENSION; SIERPINSKI CARPETS; FRACTALS; RECTIFIABILITY; SURFACES;
D O I
10.1088/0951-7715/28/8/2939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the generalized q-dimension of measures supported by Heisenberg self-affine sets in the Heisenberg group, and we obtain bounds for it which are valid for 'almost all' classes of affine contractions. In particular, when 1 < q <= 2, exact values are established for Heisenberg self-affine measures.
引用
收藏
页码:2939 / 2957
页数:19
相关论文
共 43 条
[1]  
[Anonymous], 1998, Hausdorff Measures
[2]   Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group [J].
Balogh, ZM ;
Tyson, JT .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :153-183
[3]   Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric [J].
Balogh, ZM ;
Rickly, M ;
Cassano, FS .
PUBLICACIONS MATEMATIQUES, 2003, 47 (01) :237-259
[4]   Hausdorff dimension distribution of quasiconformal mappings on the heisenberg group [J].
Balogh, ZM .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 83 (1) :289-312
[5]   Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group [J].
Balogh, Zoltan M. ;
Hoefer-Isenegger, Regula ;
Tyson, Jeremy T. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :621-651
[6]   Projection and slicing theorems in Heisenberg groups [J].
Balogh, Zoltan M. ;
Fassler, Katrin ;
Mattila, Pertti ;
Tyson, Jeremy T. .
ADVANCES IN MATHEMATICS, 2012, 231 (02) :569-604
[7]   Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups [J].
Balogh, Zoltan M. ;
Tyson, Jeremy T. ;
Warhurst, Ben .
ADVANCES IN MATHEMATICS, 2009, 220 (02) :560-619
[8]   Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum [J].
Barral, Julien ;
Mensi, Mounir .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1419-1443
[9]   Multifractal Formalism for Almost all Self-Affine Measures [J].
Barral, Julien ;
Feng, De-Jun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (02) :473-504
[10]  
Capogna L., 2007, PROGR MATH, V259