iMMPC: A Local Search Approach for Incremental Bayesian Network Structure Learning

被引:0
作者
Yasin, Amanullah [1 ]
Leray, Philippe [1 ]
机构
[1] Univ Nantes, Ecole Polytech, Knowledge & Decis Team, LINA,UMR 6241, Nantes, France
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011 | 2011年 / 7014卷
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dynamic nature of data streams leads to a number of computational and mining challenges. In such environments, Bayesian network structure learning incrementally by revising existing structure could be an efficient way to save time and memory constraints. The local search methods for structure learning outperforms to deal with high dimensional domains. The major task in local search methods is to identify the local structure around the target variable i.e. parent children (PC). In this paper we transformed the local structure identification part of MMHC algorithm into an incremental fashion by using heuristics proposed by reducing the search space. We applied incremental hill-climbing to learn a set of candidate- parent-children (CPC) for a target variable. Experimental results and theoretical justification that demonstrate the feasibility of our approach are presented.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 18 条
[1]  
Alcobe JR, 2005, AI COMMUN, V18, P61
[2]  
Alcobe JR., 2004, 1 INT WORKSH KNOWL D
[3]  
[Anonymous], 2000, ADAPTIVE COMPUTATION
[4]  
Buntine W., 1991, P 17 C UNCERTAINTY A, P52
[5]   Adaptive Bayesian network classifiers [J].
Castillo, Gladys ;
Gama, Joao .
INTELLIGENT DATA ANALYSIS, 2009, 13 (01) :39-59
[6]  
Chickering D., 1995, P 5 C ART INT STAT, P112
[7]  
CHICKERING DM, 1995, P ART INT STAT, P121
[8]   A BAYESIAN METHOD FOR THE INDUCTION OF PROBABILISTIC NETWORKS FROM DATA [J].
COOPER, GF ;
HERSKOVITS, E .
MACHINE LEARNING, 1992, 9 (04) :309-347
[9]  
de Campos LM, 2006, J MACH LEARN RES, V7, P2149
[10]  
de Morais SR, 2008, LECT NOTES ARTIF INT, V5212, P298, DOI 10.1007/978-3-540-87481-2_20