On a Boundary Value Problem For a Fifth Order Partial Integro-Differential Equation

被引:0
作者
Yuldashev, T. K. [1 ]
机构
[1] Natl Univ Uzbekistan, Tashkent, Uzbekistan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2022年 / 12卷 / 02期
关键词
nonlocal boundary value problem; fifth order integro-differential equation; degenerate kernel; Fourier series; classical solvability; PARTIAL-DIFFERENTIAL-EQUATIONS; MIXED-TYPE EQUATION; NONLOCAL PROBLEM; INVERSE PROBLEM; SOLVABILITY; EXISTENCE; DECAY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problems of the unique classical solvability and the construction of the solution of a multidimensional boundary value problem for a homogeneous fifth order partial integro-differential equations with a degenerate kernel are studied. The multidimensional Fourier series method, based on the separation of many variables, is used. A system of countable systems of integral equations is derived. Iteration process of solving the problem is constructed. Sufficient coefficient conditions for the unique classical solvability of the boundary value problem are established.
引用
收藏
页码:154 / 172
页数:19
相关论文
共 34 条
[1]   Gellerstedt Type Problem with Integral Gluing Condition for a Mixed Type Equation with Non-linear Loaded Term [J].
Abdullaev, O. Kh .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (03) :479-489
[2]   On the Unique Solvability of a Family of Boundary Value Problems for Integro-Differential Equations of Mixed Type [J].
Assanova, A. T. ;
Sabalakhova, A. P. ;
Toleukhanova, Z. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) :1228-1238
[3]   A Two-Point Boundary Value Problem for a Fourth Order Partial Integro-Differential Equation [J].
Assanova, A. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (03) :526-535
[4]   A nonlocal problem for loaded partial differential equations of fourth order [J].
Assanova, A. T. ;
Imanchiyev, A. E. ;
Kadirbayeva, Z. M. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 97 (01) :6-16
[5]  
Benney D.J., 1964, Journal of Mathematics and Physics, V43, P309, DOI [10.1002/sapm1964431309, DOI 10.1002/SAPM1964431309]
[6]  
[Бештоков Мурат Хамидбиевич Beshtokov Murat Kh.], 2020, [Владикавказский математический журнал, Vladikavkaz Mathematical Journal, Vladikavkazskii matematicheskii zhurnal], V22, P45, DOI 10.46698/p2286-5792-9411-x
[7]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[8]  
Costin O, 2000, COMMUN PUR APPL MATH, V53, P1092, DOI 10.1002/1097-0312(200009)53:9<1092::AID-CPA2>3.0.CO
[9]  
2-Z
[10]   On a Seminonlocal Boundary Value Problem for a Multidimensional Loaded Mixed Type Equation of the Second Kind [J].
Dzhamalov, S. Z. ;
Ashurov, R. R. ;
Ruziev, U. Sh .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (03) :536-543