Toric symplectic stacks

被引:9
|
作者
Hoffman, Benjamin
机构
基金
美国国家科学基金会;
关键词
Toric varieties; Symplectic geometry; Stacks; Hamiltonian mechanics; Integrable systems; ORBIFOLDS;
D O I
10.1016/j.aim.2020.107135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an intrinsic definition of compact toric symplectic stacks, and show that they are classified by simple convex polytopes equipped with some additional combinatorial data. This generalizes Delzant's classification of compact toric symplectic manifolds. As an application, we show that any compact toric symplectic stack can be deformed to an ineffective toric orbifold. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] On complex and symplectic toric stacks
    Hochenegger, Andreas
    Witt, Frederik
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 305 - +
  • [2] TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS
    Geraschenko, Anton
    Satriano, Matthew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 1073 - 1094
  • [3] Hamiltonian group actions on symplectic Deligne-Mumford stacks and toric orbifolds
    Lerman, Eugene
    Malkin, Anton
    ADVANCES IN MATHEMATICS, 2012, 229 (02) : 984 - 1000
  • [4] The category of toric stacks
    Iwanari, Isamu
    COMPOSITIO MATHEMATICA, 2009, 145 (03) : 718 - 746
  • [5] Symplectic toric manifolds
    da Silva, AC
    SYMPLECTIC GEOMETRY OF INTEGRABLE HAMILTONIAN SYSTEMS, 2003, : 85 - +
  • [6] A mirror theorem for toric stacks
    Coates, Tom
    Corti, Alessio
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    COMPOSITIO MATHEMATICA, 2015, 151 (10) : 1878 - 1912
  • [7] MOTIVIC INTEGRATION ON TORIC STACKS
    Stapledon, A.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) : 3943 - 3965
  • [8] On the Grothendieck Groups of Toric Stacks
    Hua, Zheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 665 - 670
  • [9] Nonrational symplectic toric reduction
    Battaglia, Fiammetta
    Prato, Elisa
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 : 98 - 105
  • [10] The topology of toric symplectic manifolds
    McDuff, Dusa
    GEOMETRY & TOPOLOGY, 2011, 15 (01) : 145 - 190