Space-time fractional Zener wave equation

被引:10
作者
Atanackovic, T. M. [1 ]
Janev, M. [2 ]
Oparnica, Lj. [3 ]
Pilipovic, S. [4 ]
Zorica, D. [2 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Dept Mech, Novi Sad 21000, Serbia
[2] Serbian Acad Arts & Sci, Math Inst, Belgrade 11000, Serbia
[3] Univ Novi Sad, Fac Educ Sombor, Sombor 25000, Serbia
[4] Univ Novi Sad, Fac Nat Sci & Math, Dept Math, Novi Sad 21000, Serbia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2174期
关键词
fractional Zener model; fractional strain measure; Laplace and Fourier transforms; Cauchy problem; generalized solution; EXACT MECHANICAL MODELS; DISTRIBUTED-ORDER; HEREDITARY MATERIALS; DIFFUSION-EQUATIONS; CALCULUS APPROACH; ELASTICITY; CONTINUA;
D O I
10.1098/rspa.2014.0614
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The space-time fractional Zener wave equation, describing viscoelastic materials obeying the time-fractional Zener model and the space-fractional strain measure, is derived and analysed. This model includes waves with finite speed, as well as non-propagating disturbances. The existence and the uniqueness of the solution to the generalized Cauchy problem are proved. Special cases are investigated and numerical examples are presented.
引用
收藏
页数:25
相关论文
共 45 条
[1]  
[Anonymous], 1975, Basic linear partial differential equations
[2]  
[Anonymous], ZH PRIKL MEKH TEKH F
[3]  
[Anonymous], 2011, ABSTR APPL AN
[4]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[5]  
Atanackovic T.M., 2000, Theory of Elasticity for Scientists and Engineers
[6]   The Cattaneo type space-time fractional heat conduction equation [J].
Atanackovic, Teodor ;
Konjik, Sanja ;
Oparnica, Ljubica ;
Zorica, Dusan .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2012, 24 (4-6) :293-311
[7]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[8]   Time distributed-order diffusion-wave equation. I. Volterra-type equation [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1869-1891
[9]  
Atanackovic TM, 2012, SYSTEM EQUATIONS ARI
[10]  
Bagley R.:., 2007, FRACT CALC APPL ANAL, V10, P123