Uniformization of SierpiA"ski carpets in the plane

被引:39
作者
Bonk, Mario [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Pairwise Disjoint; Complementary Component; Jordan Curve; Peripheral Circle; Distortion Function;
D O I
10.1007/s00222-011-0325-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-i, i is an element of I, be a countable collection of Jordan curves in the extended complex plane (C) over cap that bound pairwise disjoint closed Jordan regions. If the Jordan curves are uniform quasicircles and are uniformly relatively separated, then there exists a quasiconformal map f : (C) over cap -> (C) over cap such that f (S-i) is a round circle for all i is an element of I. This implies that every Sierpinski carpet in (C) over cap whose peripheral circles are uniformly relatively separated uniform quasicircles can be mapped to a round Sierpinski carpet by a quasisymmetric map.
引用
收藏
页码:559 / 665
页数:107
相关论文
共 36 条
[1]  
Ahlfors L. V., 2010, CONFORMAL INVARIANTS
[2]   QUASICONFORMAL REFLECTIONS [J].
AHLFORS, LV .
ACTA MATHEMATICA, 1963, 109 (3-4) :291-301
[3]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[4]  
[Anonymous], 2001, ASTERISQUE
[5]  
[Anonymous], 2007, ELEMENTS ASYMPTOTIC
[6]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[7]  
[Anonymous], 1971, LECT NOTES MATH
[8]  
[Anonymous], 1978, COUNTEREXAMPLES TOPO, DOI DOI 10.1007/978-1-4612-6290-9
[9]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[10]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52