Classifier performance estimation under the constraint of a finite sample size: Resampling schemes applied to neural network classifiers

被引:18
作者
Sahiner, Berkman [1 ]
Chan, Heang-Ping [1 ]
Hadjiiski, Lubomir [1 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
关键词
performance estimation; finite sample size; resampling;
D O I
10.1016/j.neunet.2007.12.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a practical classifier design problem the sample size is limited, and the available finite sample needs to be used both to design a classifier and to predict the classifier's performance for the true population. Since a larger sample is more representative of the population, it is advantageous to design the classifier with all the available cases, and to use a resampling technique for performance prediction. We conducted a Monte Carlo simulation study to compare the ability of different resampling techniques in predicting the performance of a neural network (NN) classifier designed with the available sample. We used the area under the receiver operating characteristic curve as the performance index for the NN classifier. We investigated resampling techniques based on the cross-validation, the leave-one-out method, and three different types of bootstrapping, namely, the ordinary, .632, and .632+ bootstrap. Our results indicated that, under the study conditions, there can be a large difference in the accuracy of the prediction obtained from different resampling methods, especially when the feature space dimensionality is relatively large and the sample size is small. Although this investigation is performed under some specific conditions, it reveals important trends for the problem of classifier performance prediction under the constraint of a limited data set. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:476 / 483
页数:8
相关论文
共 10 条
[1]  
[Anonymous], APPL IM PATT REC WOR
[2]   Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers [J].
Chan, HP ;
Sahiner, B ;
Wagner, RF ;
Petrick, N .
MEDICAL PHYSICS, 1999, 26 (12) :2654-2668
[3]   Improvements on cross-validation: The .632+ bootstrap method [J].
Efron, B ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :548-560
[5]   EFFECTS OF SAMPLE-SIZE IN CLASSIFIER DESIGN [J].
FUKUNAGA, K ;
HAYES, RR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (08) :873-885
[6]  
FUKUNAGA K, 1990, INTRO STAT PATTERN
[7]  
Metz CE, 1998, STAT MED, V17, P1033, DOI 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO
[8]  
2-Z
[9]  
SAHINER B, 2001, MED IM PERC C, V9
[10]  
SAHINER B, 2007, P 2007 INT JOINT C N, P1762