Correlation between catalyst particle and single-walled carbon nanotube diameters

被引:229
|
作者
Nasibulin, AG
Pikhitsa, PV
Jiang, H
Kauppinen, EI [1 ]
机构
[1] VTT Proc, Aerosol Technol Grp, POB 1602, FIN-02044 Espoo, Finland
[2] Aalto Univ, Ctr New Mat, FIN-02044 Espoo, Finland
[3] Aalto Univ, Dept Engn Math & Phys, FIN-02044 Espoo, Finland
[4] Seoul Natl Univ, Inst Adv Machinery & Design, Natl CRI Ctr Nano Particle Control, Seoul 151742, South Korea
基金
芬兰科学院;
关键词
carbon nanotubes; catalyst support; electron microscopy;
D O I
10.1016/j.carbon.2005.03.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-walled carbon nanotubcs (CNTs) were synthesised at different conditions by a novel aerosol method based on the introduction of pre-formed iron catalyst particles into conditions leading to CNT formation. The results of statistical measurements of individual CNT dimensions based on high-resolution TEM images showed the effects of the residence time and temperature in the reactor. The ratio between catalyst particle and CNT diameters was close to 1.6 and independent of the experimental conditions, thus revealing an astonishing "universality" in the growth process. A proposed geometric model of heptagon defect formation, which initiates and maintains the CNT growth, allowed us to theoretically explain the phenomenon. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2251 / 2257
页数:7
相关论文
共 50 条
  • [41] In situ fabrication of freestanding single-walled carbon nanotube rope interconnection
    Kim, Taewoo
    Kang, Tae June
    Seo, Dong Kyun
    Jang, Eui Yun
    Jin, Kyoung Cheol
    Choi, Ajeong
    Kim, Dae-Weon
    Park, Yung Woo
    Jeong, Dae Hong
    Kim, Yong Hyup
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (11): : 2179 - 2185
  • [42] Arresting Photodegradation in Semiconducting Single-Walled Carbon Nanotube Thin Films
    Larson, Bryon W.
    Thurman, Kira A.
    Kang, Hyun Suk
    Ferguson, Andrew J.
    Blackburn, Jeffrey L.
    Steger, Mark
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 3502 - 3511
  • [43] Single-Walled Carbon-Nanotube Dispersion with Electrostatically Tethered Nanoplatelets
    Sun, Dazhi
    Everett, W. Neil
    Chu, Chien-Chia
    Sue, Hung-Jue
    SMALL, 2009, 5 (23) : 2692 - 2697
  • [44] Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation
    Andersen, Alina J.
    Robinson, Joshua T.
    Dai, Hongjie
    Hunter, A. Christy
    Andresen, Thomas L.
    Moghimi, S. Moein
    ACS NANO, 2013, 7 (02) : 1108 - 1119
  • [45] Temperature and Chirality Dependent Mechanical Properties of Single-Walled Carbon Nanotube
    Liu, Z. H.
    Dong, Z. L.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (04) : 914 - 918
  • [46] Modulational instability of gap solitons in single-walled carbon nanotube lattices
    Mozola, Brantony
    Tabi, Conrad Bertrand
    Kofane, Timoleon Crepin
    WAVE MOTION, 2020, 94
  • [47] Molecular Dynamics Simulation of Single-Walled Carbon Nanotube - PMMA Interaction
    Rahmat, Meysam
    Hubert, Pascal
    JOURNAL OF NANO RESEARCH, 2012, 18-19 : 117 - 128
  • [48] Single-Walled Carbon Nanotube Sensor Platform for the Study of Extracellular Analytes
    Stapleton, Joseph A.
    Hofferber, Eric M.
    Meier, Jakob
    Ramirez, Ivon Acosta
    Iverson, Nicole M.
    ACS APPLIED NANO MATERIALS, 2021, 4 (01) : 33 - 42
  • [49] Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid
    Lim, Siwool
    Kim, Hyungsu
    THIN SOLID FILMS, 2012, 520 (24) : 7176 - 7182
  • [50] The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes
    Li, Lain-Jong
    Glerup, M.
    Khlobystov, A. N.
    Wiltshire, J. G.
    Sauvajol, J. -L.
    Tavlor, R. A.
    Nicholas, R. J.
    CARBON, 2006, 44 (13) : 2752 - 2757