Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals

被引:1
作者
Lyu, Bensheng [1 ]
Jia, Li [1 ]
Li, Feng [2 ]
机构
[1] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai 200072, Peoples R China
[2] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Autoregressive processes; Colored noise; Stochastic processes; Iterative methods; Biological system modeling; Computational modeling; Heuristic algorithms; Wiener model; separable signal; correlation analysis; stochastic gradient; IDENTIFICATION; SYSTEMS;
D O I
10.1109/ACCESS.2020.2983969
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method.
引用
收藏
页码:67047 / 67058
页数:12
相关论文
共 50 条
  • [41] Filter-based Online Neuro-Fuzzy Model Learning using Noisy Measurements
    Gu, Wen
    Lan, Jianglin
    Mason, Byron
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [42] Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
    Rajaee, T.
    Mirbagheri, S. A.
    Nourani, V.
    Alikhani, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2010, 7 (01) : 93 - 110
  • [43] Combining Global Model and Local Adaptive Neuro-Fuzzy Network
    Han, Yun-Hee
    Kwak, Keun-Chang
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 184 - 189
  • [44] FOX: a neuro-Fuzzy model for process Outcome prediction and eXplanation
    Pasquadibisceglie, Vincenzo
    Castellano, Giovanna
    Appice, Annalisa
    Malerba, Donato
    2021 3RD INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2021), 2021, : 112 - 119
  • [45] Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification
    Feng, Shuang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (02) : 414 - 424
  • [46] Neuro-fuzzy model for Prognostic as a Service in private cloud computing
    Bouzidi, Zahra
    Terrissa, Labib
    Lahmadi, Ahmed
    Zerhouni, Noureddine
    Gouriveau, Rafael
    2016 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2016, : 360 - 367
  • [47] Design of An EP-Based Neuro-Fuzzy Classification Model
    Guo, Nai Ren
    Kuo, Chao-Lin
    Tsai, Tzong-Jiy
    2009 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2009, : 908 - +
  • [48] Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction
    Hsiao, Fan-Yi
    Wang, Shih-Hsu
    Wang, Wei-Chih
    Wen, Chao-Pao
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2012, 27 (10) : 764 - 781
  • [49] Dynamic Morphing of Smart Trusses and Mechanisms Using Fuzzy and Neuro-Fuzzy Techniques
    Tairidis, Georgios K.
    Muradova, Aliki D.
    Stavroulakis, Georgios E.
    FRONTIERS IN BUILT ENVIRONMENT, 2019, 5
  • [50] Novel parameter estimation of autoregressive signals in the presence of noise
    Xia, Youshen
    Zheng, Wei Xing
    AUTOMATICA, 2015, 62 : 98 - 105