Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals

被引:1
作者
Lyu, Bensheng [1 ]
Jia, Li [1 ]
Li, Feng [2 ]
机构
[1] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai 200072, Peoples R China
[2] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Autoregressive processes; Colored noise; Stochastic processes; Iterative methods; Biological system modeling; Computational modeling; Heuristic algorithms; Wiener model; separable signal; correlation analysis; stochastic gradient; IDENTIFICATION; SYSTEMS;
D O I
10.1109/ACCESS.2020.2983969
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method.
引用
收藏
页码:67047 / 67058
页数:12
相关论文
共 50 条
  • [31] Applying neuro-fuzzy model dFasArt in control systems
    Cano-Izquierdo, J.
    Almonacid, M.
    Ibarrola, J. J.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1053 - 1063
  • [32] Identification of Wiener model using step signals and particle swarm optimization
    Tang, Yinggan
    Qiao, Leijie
    Guan, Xinping
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3398 - 3404
  • [33] DOA Estimation of Uncorrelated and Coherent Mixed Signals in Colored Noise
    Rao W.
    Jia F.-Q.
    Li D.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (03): : 622 - 631
  • [34] MODAL ANALYSIS OF SYSTEMS USING A NEURO-FUZZY APPROACH
    Khoshnoud, Farbod
    de Silva, Clarence W.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 8, PTS A AND B, 2012, : 1085 - 1097
  • [35] A compact meta-learned neuro-fuzzy technique for noise-robust nonlinear control
    Ferdaus, Md Meftahul
    Al-Mahasneh, Ahmad Jobran
    Anavatti, Sreenatha G.
    Senthilnath, J.
    APPLIED SOFT COMPUTING, 2024, 166
  • [36] Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques
    Sanikhani, Hadi
    Kisi, Ozgur
    Nikpour, Mohammad Reza
    Dinpashoh, Yagob
    WATER RESOURCES MANAGEMENT, 2012, 26 (15) : 4347 - 4365
  • [37] Asymptotic results for cisoid parameter estimation in the colored noise case
    Stoica, P
    Jakobsson, A
    Li, J
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 471 - 476
  • [38] Neuro-fuzzy Classification of Transcranial Doppler Signals with Chaotic Meaures and Spectral Parameters
    Ozturk, Ali
    Arslan, Ahmet
    2015 SCIENCE AND INFORMATION CONFERENCE (SAI), 2015, : 591 - 596
  • [39] Application of Adaptive Neuro-Fuzzy Logic Method of Noised Electrical Signals for Correction
    Can, Erol
    TECCIENCIA, 2020, 15 (28) : 1 - 13
  • [40] Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning
    Stieler, Florian
    Yan, Hui
    Lohr, Frank
    Wenz, Frederik
    Yin, Fang-Fang
    RADIATION ONCOLOGY, 2009, 4 : 39