Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals

被引:1
作者
Lyu, Bensheng [1 ]
Jia, Li [1 ]
Li, Feng [2 ]
机构
[1] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai 200072, Peoples R China
[2] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Autoregressive processes; Colored noise; Stochastic processes; Iterative methods; Biological system modeling; Computational modeling; Heuristic algorithms; Wiener model; separable signal; correlation analysis; stochastic gradient; IDENTIFICATION; SYSTEMS;
D O I
10.1109/ACCESS.2020.2983969
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method.
引用
收藏
页码:67047 / 67058
页数:12
相关论文
共 50 条
  • [21] River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches
    Sanikhani, Hadi
    Kisi, Ozgur
    WATER RESOURCES MANAGEMENT, 2012, 26 (06) : 1715 - 1729
  • [22] Plunging Flow Depth Estimation in a Stratified Dam Reservoir Using Neuro-Fuzzy Technique
    Unes, Fatih
    Joksimovic, Darko
    Kisi, Ozgur
    WATER RESOURCES MANAGEMENT, 2015, 29 (09) : 3055 - 3077
  • [23] Adaptive neuro-fuzzy computing technique for suspended sediment estimation
    Kisi, Ozgur
    Haktanir, Tefaruk
    Ardichoglu, Mehmet
    Ozturk, Ozgur
    Yalcin, Ekrem
    Uludag, Salih
    ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (06) : 438 - 444
  • [24] Improving the Adaptive Neuro-Fuzzy Method to Intellectualize Multisensor Signals Processing
    Jun, Su
    Roshchupkina, Nataliia
    Roshchupkin, Oleksiy
    Kochan, Volodymyr
    2018 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND APPLICATION SYSTEMS (DAS), 2018, : 204 - 209
  • [25] Predictive human operator model to be utilized as a controller using linear, neuro-fuzzy and fuzzy-ARX modeling techniques
    Celik, Ozkan
    Ertugrul, Seniz
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (04) : 595 - 603
  • [26] A neuro-fuzzy approach to the weight estimation of aircraft structural components
    Hannon, C.
    Querin, O. M.
    Toropov, V. V.
    AERONAUTICAL JOURNAL, 2011, 115 (1174) : 739 - 748
  • [27] Neuro-fuzzy model of flue gas oxygen content
    Hímer, Z
    Wertz, V
    Kovács, J
    Kortela, U
    Proceedings of the 23rd IASTED International Conference on Modelling, Identification, and Control, 2004, : 98 - 102
  • [28] A Neuro-Fuzzy Model of the Residuary Resistance of Sailing Yachts
    Lazarevska, Elizabeta
    2016 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2016, : 173 - 179
  • [29] Bayesian Neuro-Fuzzy Inference System for Temporal Dependence Estimation
    Samanta, Subhrajit
    Pratama, Mahardhika
    Sundaram, Suresh
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (09) : 2479 - 2490
  • [30] An Asymmetric Neuro-Fuzzy Model for the Detection of Meat Spoilage
    Kodogiannis, Vassilis S.
    Alshejari, Abeer
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,