Parameter Estimation of Neuro-Fuzzy Wiener Model With Colored Noise Using Separable Signals

被引:1
作者
Lyu, Bensheng [1 ]
Jia, Li [1 ]
Li, Feng [2 ]
机构
[1] Shanghai Univ, Coll Mechatron Engn & Automat, Dept Automat, Shanghai 200072, Peoples R China
[2] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Autoregressive processes; Colored noise; Stochastic processes; Iterative methods; Biological system modeling; Computational modeling; Heuristic algorithms; Wiener model; separable signal; correlation analysis; stochastic gradient; IDENTIFICATION; SYSTEMS;
D O I
10.1109/ACCESS.2020.2983969
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a neuro-fuzzy based identification problem for Wiener model with controlled autoregressive moving average noise. The separable signal is applied to decouple the dynamic linear part and the static nonlinear part, and the correlation analysis method is adopted to estimate the parameters of the linear part. To improve the convergence rate of generalized extended stochastic gradient (GESG) algorithm, a generalized extended stochastic gradient algorithm with a forgetting factor is derived for estimating the parameters of the nonlinear part and the parameters of noise model. Examples results verify the effectiveness of the proposed method.
引用
收藏
页码:67047 / 67058
页数:12
相关论文
共 50 条
  • [1] Combined separable signals based neuro-fuzzy Hammerstein-Wiener model
    Jia Li
    Feng Qiliang
    MEMETIC COMPUTING, 2017, 9 (03) : 245 - 259
  • [2] Neuro-fuzzy based identification method for Hammerstein output error model with colored noise
    Li, Feng
    Jia, Li
    Peng, Daogang
    Han, Chao
    NEUROCOMPUTING, 2017, 244 : 90 - 101
  • [3] Correlation based neuro-fuzzy Wiener type wind power forecasting model by using special separate signals
    Xu, Yue
    Jia, Li
    Yang, Wei
    ENERGY CONVERSION AND MANAGEMENT, 2022, 253
  • [4] The identification of neuro-fuzzy based MIMO Hammerstein model with separable input signals
    Jia, Li
    Li, Xunlong
    Chiu, Min-Sen
    NEUROCOMPUTING, 2016, 174 : 530 - 541
  • [5] Correlation analysis method based SISO neuro-fuzzy Wiener model
    Jia, Li
    Xiong, Qi
    Li, Feng
    JOURNAL OF PROCESS CONTROL, 2017, 58 : 73 - 89
  • [6] Parameter estimation of autoregressive signals from observations corrupted with colored noise
    Mahmoudi, Alimorad
    Karimi, Mahmood
    SIGNAL PROCESSING, 2010, 90 (01) : 157 - 164
  • [7] Parameter estimation of neuro-fuzzy based Hammerstein controlled autoregressive autoregressive moving average systems
    Lyu, Bensheng
    Jia, Li
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1829 - 1834
  • [8] Parameters estimation for the Hammerstein-Wiener models with colored noise based on hybrid signals
    Li, Feng
    Han, Jiahu
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (03) : 921 - 937
  • [9] Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eigenvalue problem
    Mahmoudi, Alimorad
    Karimi, Mahmood
    Amindavar, Hamidreza
    SIGNAL PROCESSING, 2012, 92 (04) : 1151 - 1156
  • [10] Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals
    Li, Feng
    Jia, Li
    NEUROCOMPUTING, 2019, 344 : 37 - 48