Magnon-magnon entanglement and its quantification via a microwave cavity

被引:35
作者
Mousolou, Vahid Azimi [1 ,2 ]
Liu, Yuefei [3 ]
Bergman, Anders [2 ]
Delin, Anna [2 ,3 ,4 ]
Eriksson, Olle [2 ,5 ]
Pereiro, Manuel [2 ]
Thonig, Danny [5 ]
Sjoqvist, Erik [2 ]
机构
[1] Univ Isfahan, Fac Math & Stat, Dept Appl Math & Comp Sci, Esfahan 8174673441, Iran
[2] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[3] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci, Dept Appl Phys, SE-10691 Stockholm, Sweden
[4] KTH Royal Inst Technol, Swedish E Sci Res Ctr, SE-10044 Stockholm, Sweden
[5] Orebro Univ, Sch Sci & Technol, SE-70182 Orebro, Sweden
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
Quantum entanglement - Hybrid systems - Quantum optics - HTTP;
D O I
10.1103/PhysRevB.104.224302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum magnonics is an emerging research field, with great potential for applications in magnon based hybrid systems and quantum information processing. Quantum correlation, such as entanglement, is a central resource in many quantum information protocols that naturally comes about in any study toward quantum technologies. This applies also to quantum magnonics. Here, we investigate antiferromagnetic coupling of two ferromagnetic sublattices that can have two different magnon modes. We show how this may lead to experimentally measurable bipartite continuous-variable magnon-magnon entanglement. The entanglement can be fully characterized via a single squeezing parameter or, equivalently, entanglement parameter. The clear relation between the entanglement parameter and the Einstein, Podolsky, and Rosen (EPR) function of the ground state opens up for experimental quantification magnon-magnon continuous-variable entanglement and EPR nonlocality. We propose a practical experimental realization to measure the EPR function of the ground state, in a setting that relies on magnon-photon interaction in a microwave cavity.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
Armstrong S, 2015, NAT PHYS, V11, P167, DOI [10.1038/NPHYS3202, 10.1038/nphys3202]
[2]  
Awschalom D. D., 2021, IEEE T QUANTUM ENG, V2
[3]  
Azimi-Mousolou V., 2020, Phys. Rev. B, V102
[4]   Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets [J].
Bossini, D. ;
Dal Conte, S. ;
Cerullo, G. ;
Gomonay, O. ;
Pisarev, R., V ;
Borovsak, M. ;
Mihailovic, D. ;
Sinova, J. ;
Mentink, J. H. ;
Rasing, Th ;
Kimel, A., V .
PHYSICAL REVIEW B, 2019, 100 (02)
[5]   Hybrid quantum systems with circuit quantum electrodynamics [J].
Clerk, A. A. ;
Lehnert, K. W. ;
Bertet, P. ;
Petta, J. R. ;
Nakamura, Y. .
NATURE PHYSICS, 2020, 16 (03) :257-267
[6]  
Cullity D., 2009, Introduction to Magnetic Materials, V2nd, DOI DOI 10.1002/9780470386323
[7]   Number-phase entanglement and Einstein-Podolsky-Rosen steering [J].
Fadel, Matteo ;
Ares, Laura ;
Luis, Alfredo ;
He, Qiongyi .
PHYSICAL REVIEW A, 2020, 101 (05)
[8]   Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates [J].
Fadel, Matteo ;
Zibold, Tilman ;
Decamps, Boris ;
Treutlein, Philipp .
SCIENCE, 2018, 360 (6387) :409-412
[9]  
Fert A, 2008, REV MOD PHYS, V80, P1517, DOI 10.1103/RevModPhys.80.1517
[10]   Entanglement of formation for symmetric Gaussian states -: art. no. 107901 [J].
Giedke, G ;
Wolf, MM ;
Krüger, O ;
Werner, RE ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2003, 91 (10) :107901-107901