Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data

被引:43
作者
Binetti, Giulio [1 ]
Del Coco, Laura [2 ]
Ragone, Rosa [3 ]
Zelasco, Sarnanta [4 ]
Perri, Enzo [4 ]
Montemurro, Cinzia [5 ]
Valentini, Raffaele [6 ]
Naso, David [1 ]
Fanizzi, Francesco Paolo [2 ]
Schena, Francesco Paolo [3 ]
机构
[1] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Salento, Dipartimento Tecnol Biol & Ambientali, I-73100 Lecce, Italy
[3] Univ Bari, Consorzio CARSO, Str Prov Casamassima Km 3, I-70010 Bari, Italy
[4] Ctr Ric Olivicoltura & Ind Olearia, Consiglio Ric Agr & Anal Econ Agr, I-87036 Cosenza, Italy
[5] Univ Bari, Sez Genet & Miglioramento, Dipartimento Biol & Chim Agroforestale & Ambienta, Via Amendola 165-A, I-70126 Bari, Italy
[6] Oliveti Terra Bari OP Olivicoli Soc Coop Agr, 6-A,Via Brigata 6-A, I-70124 Bari, Italy
关键词
Artificial neural networks; Olive oil; Cultivar classification; Merceological analysis; Near-infra red spectroscopy; Nuclear magnetic resonance spectroscopy; GEOGRAPHICAL ORIGIN; REGRESSION SHRINKAGE; AUTHENTICATION; SPECTROSCOPY; SELECTION; APPROXIMATION; STABILITY; EVALUATE; MS;
D O I
10.1016/j.foodchem.2016.09.041
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The development of an efficient and accurate method for extra-virgin olive oils cultivar and origin authentication is complicated by the broad range of variables (e.g., multiplicity of varieties, pedoclimatic aspects, production and storage conditions) influencing their properties. In this study, artificial neural networks (ANNs) were applied on several analytical datasets, namely standard merceological parameters, near-infra red data and 1H nuclear magnetic resonance (NMR) fingerprints, obtained on mono-cultivar olive oils of four representative Apulian varieties (Coratina, Ogliarola, Cima di Mola, Peranzana). We analyzed 888 samples produced at a laboratory-scale during two crop years from 444 plants, whose variety was genetically ascertained, and on 17 industrially produced, samples. ANN models based on NMR data showed the highest capability to classify cultivars (in some cases, accuracy > 9926), independently on the olive oil production process and year; hence, the NMR data resulted to be the most informative variables about the cultivars. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 37 条
[1]   Determination of the cultivar and aging of Sicilian olive oils using HPLC-MS and linear discriminant analysis [J].
Agozzino, Pasquale ;
Avellone, Giuseppe ;
Bongiorno, David ;
Ceraulo, Leopoldo ;
Indelicato, Serena ;
Indelicato, Sergio ;
Vekey, Karoly .
JOURNAL OF MASS SPECTROMETRY, 2010, 45 (09) :989-995
[2]   SSR-based identification key of cultivars of Olea europaea L. diffused in Southern-Italy [J].
Alba, Vittorio ;
Montemurro, Cinzia ;
Sabetta, Wilma ;
Pasqualone, Antonella ;
Blanco, Antonio .
SCIENTIA HORTICULTURAE, 2009, 123 (01) :11-16
[3]  
Almoselhy R. I. M., 2014, Annals of Agricultural Science (Cairo), V59, P201, DOI 10.1016/j.aoas.2014.11.006
[4]   Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes [J].
Alonso-Salces, R. M. ;
Heberger, K. ;
Holland, M. V. ;
Moreno-Rojas, J. M. ;
Mariani, C. ;
Bellan, G. ;
Reniero, F. ;
Guillou, C. .
FOOD CHEMISTRY, 2010, 118 (04) :956-965
[5]  
Aparicio R, 2002, EUR J LIPID SCI TECH, V104, P614, DOI 10.1002/1438-9312(200210)104:9/10<614::AID-EJLT614>3.0.CO
[6]  
2-L
[7]   Potential of LC-MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils [J].
Bajoub, Aadil ;
Carrasco-Pancorbo, Alegria ;
Ajal, El Amine ;
Ouazzani, Noureddine ;
Fernandez-Gutierrez, Alberto .
FOOD CHEMISTRY, 2015, 166 :292-300
[8]   A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy [J].
Barison, Andersson ;
Pereira da Silva, Caroline Werner ;
Campos, Francinete Ramos ;
Simonelli, Fabio ;
Lenz, Cesar Antonio ;
Ferreira, Antonio Gilberto .
MAGNETIC RESONANCE IN CHEMISTRY, 2010, 48 (08) :642-650
[9]  
Bishop C., 2006, Pattern recognition and machine learning, P423
[10]  
Bishop C.M., 2005, NEURAL NETWORKS PATT