Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway

被引:47
作者
Ruiz, Amparo [1 ]
Serrano, Raquel [1 ]
Arino, Joaquin [1 ,2 ]
机构
[1] Univ Autonoma Barcelona, Dept Bioquim & Biol Mol, E-08193 Barcelona, Spain
[2] Univ Autonoma Barcelona, Inst Biotecnol & Biomed, E-08193 Barcelona, Spain
关键词
D O I
10.1074/jbc.M708683200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Failure to use glucose as carbon source results in transcriptional activation of numerous genes whose expression is otherwise repressed. HXT2 encodes a yeast high affinity glucose transporter that is only expressed under conditions of glucose limitation. We show that HXT2 is rapidly and potently induced by environmental alkalinization, and this requires both the Snf1 and the calcineurin pathways. Regulation by calcineurin is mediated by the transcription factor Crz1, which rapidly translocates to the nucleus upon high pH stress, and acts through a previously unnoticed Crz1-binding element (calcineurin-dependent response element) in the HXT2 promoter (-507 GGGGCTG -501). We demonstrate that, in addition to HXT2, many other genes required for adaptation to glucose shortage, such as HXT7, MDH2, or ALD4, transcriptionally respond to calcium and high pH signaling through binding of Crz1 to their promoters. Therefore, calcineurin-dependent transcriptional regulation appears to be a common feature for many genes encoding carbohydrate-metabolizing enzymes. Remarkably, extracellular calcium allows growth of a snf1 mutant on low glucose in a calcineurin/Crz1-dependent manner, indicating that activation of calcineurin is sufficient to override a major deficiency in the glucose-repression pathway. We propose that alkalinization of the medium results in impaired glucose utilization and that activation of certain glucose-metabolizing genes by calcineurin contributes to yeast survival under this stress situation.
引用
收藏
页码:13923 / 13933
页数:11
相关论文
共 60 条
[1]  
Adams A., 1997, METHODS YEAST GENETI
[2]   Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene [J].
Alepuz, PM ;
Cunningham, KW ;
Estruch, F .
MOLECULAR MICROBIOLOGY, 1997, 26 (01) :91-98
[3]  
Aramburu J, 2000, CURR TOP CELL REGUL, V36, P237
[4]   The molecular genetics of hexose transport in yeasts [J].
Boles, E ;
Hollenberg, CP .
FEMS MICROBIOLOGY REVIEWS, 1997, 21 (01) :85-111
[5]   Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site [J].
Boustany, LM ;
Cyert, MS .
GENES & DEVELOPMENT, 2002, 16 (05) :608-619
[6]   Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae [J].
Buziol, S ;
Becker, J ;
Baumeister, A ;
Jung, S ;
Mauch, K ;
Reuss, M ;
Boles, E .
FEMS YEAST RESEARCH, 2002, 2 (03) :283-291
[7]   Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae [J].
Colombo, S ;
Ma, PS ;
Cauwenberg, L ;
Winderickx, J ;
Crauwels, M ;
Teunissen, A ;
Nauwelaers, D ;
de Winde, JH ;
Gorwa, MF ;
Colavizza, D ;
Thevelein, JM .
EMBO JOURNAL, 1998, 17 (12) :3326-3341
[8]   Calcineurin signaling in Saccharomyces cereviside:: how yeast go crazy in response to stress [J].
Cyert, MS .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 311 (04) :1143-1150
[9]   Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae [J].
Cyert, MS .
ANNUAL REVIEW OF GENETICS, 2001, 35 :647-672
[10]   Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue [J].
Denis, V ;
Cyert, MS .
JOURNAL OF CELL BIOLOGY, 2002, 156 (01) :29-34