Optimal Multiple-Impulse Circular Orbit Phasing

被引:2
作者
Trofimov, Sergey P. [1 ]
Ovchinnikov, Mikhail Yu. [2 ]
机构
[1] Keldysh Inst Appl Math, Spaceflight Mech & Control Dept, 4 Miusskaya Pl, Moscow 125047, Russia
[2] Keldysh Inst Appl Math, Spaceflight Mech & Control Dept, Attitude Control Syst & Orientat Div, 4 Miusskaya Pl, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
OPTIMAL; 2-IMPULSE; VICINITY;
D O I
10.2514/1.G001513
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A study considers the fundamental problem of circular orbit phasing by performing a multiple-impulse maneuver. It is shown below that the peculiar properties of the considered problem allow a simpler procedure of finding the globally optimal solution. It appears to be composed of two- and four-impulse maneuvers and switches between them as the phasing maneuver duration grows. Two-impulse maneuvers do not require any optimization, as they are unambiguously calculated as least-delta-v solutions to the multiple-revolution Lambert problem.
引用
收藏
页码:1675 / +
页数:4
相关论文
共 14 条
[1]  
Baranov A., 1995, COSMIC RES+, P382
[2]   Quadratic-based computation of four-impulse optimal rendezvous near circular orbit [J].
Carter, TE ;
Alvarez, SA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (01) :109-117
[3]   NON-INTEGER TRANSFER ORBITS FOR CIRCULAR ORBIT PHASING MANEUVERS [J].
COLLYER, GL .
JOURNAL OF SPACECRAFT AND ROCKETS, 1976, 13 (10) :628-630
[4]  
Gooding RH, 1990, CELEST MECH DYN ASTR, V48, P145
[5]  
Hall CD, 2003, ADV ASTRONAUT SCI, V115, P79
[6]   Minimum-time orbital phasing maneuvers [J].
Hall, CD ;
Collazo-Perez, V .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (06) :934-941
[7]  
Hanson J. M., 1990, P AAS AIAA ASTR C, P1029
[8]  
Lancaster E. R., 1968, TMX63355 NASA
[9]  
Lawden D.F., 1963, OPTIMAL TRAJECTORIES, P60, DOI [10.2307/3611765, DOI 10.2307/3611765]
[10]  
Neustadt L.W., 1965, SIAM J CONTROL, V3, P317