Viscosity of Spinel Primary Phase Field Slags from Australian Brown Coals

被引:15
作者
Ilyushechkin, Alexander [1 ]
Kondratiev, Alex [2 ]
He, Chong [1 ,3 ]
Bai, Jin [3 ]
Chen, Xiaodong [1 ,3 ]
Hla, San Shwe [1 ]
机构
[1] CSIRO Energy, Pullenvale, Qld 4069, Australia
[2] NUST MISIS, SRC Thermochem Mat, Moscow 119049, Russia
[3] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China
关键词
SLAGGING BEHAVIOR; FLOW;
D O I
10.1021/acs.energyfuels.9b04312
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The achievement of a steady rate of slag tapping in entrained-flow gasifiers relies on their continuous, smooth operation. In turn, this requires the viscosity of coal ash slags to be within 5-25 Pa.s at operating temperatures. However, slagging behavior, including viscosity, strongly depends on coal ash mineral and chemical composition. These vary significantly in Australian brown coal ashes, making continuous gasifier operation difficult. In our previous work, we identified brown coal ash compositions that satisfy entrained-flow gasification conditions and were attributed to specific primary phase fields of the corresponding slag compositions. In this work, we experimentally determined the viscosity and phase composition of slag samples prepared from the spinel primary phase field. On the basis of these results, we evaluated different viscosity models to identify those that accurately described the viscosity of the liquid phase. The models were then applied to describe the viscosity of two-phase slags with spinel crystals and evaluate effective slag viscosity. Lastly, we developed a model to describe the kinetics of spinel growth during slag isothermal crystallization and linked the model to the effective viscosity of the investigated slags.
引用
收藏
页码:3041 / 3056
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1984, ACS S SER OXFORD U P
[2]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI DOI 10.1063/1.1750631
[3]   FactSage thermochemical software and databases, 2010-2016 (vol 54, pg 35, 2016) [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Gheribi, A. E. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Petersen, S. ;
Robelin, C. ;
Sangster, J. ;
Spencer, P. ;
Van Ende, M. -A. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 55 :1-19
[4]   DENSITY CALCULATIONS FOR SILICATE LIQUIDS .1. REVISED METHOD FOR ALUMINOSILICATE COMPOSITIONS [J].
BOTTINGA, Y ;
WEILL, D ;
RICHET, P .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1982, 46 (06) :909-919
[5]   COAL ASH COMPOSITION OF AUSTRALIAN LOW RANK COALS [J].
BROWN, LJ ;
CASHION, JD ;
LEDGER, RC .
HYPERFINE INTERACTIONS, 1992, 71 (1-4) :1411-1414
[6]   An empirical method for the prediction of coal ash slag viscosity [J].
Browning, GJ ;
Bryant, GW ;
Hurst, HJ ;
Lucas, JA ;
Wall, TF .
ENERGY & FUELS, 2003, 17 (03) :731-737
[7]   Matching gasification technologies to coal properties [J].
Collot, AG .
INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2006, 65 (3-4) :191-212
[8]   Treatments of low rank coals for improved power generation and reduction in Greenhouse gas emissions [J].
Domazetis, G. ;
Barilla, P. ;
James, B. D. ;
Glaisher, R. .
FUEL PROCESSING TECHNOLOGY, 2008, 89 (01) :68-76
[9]   A new determination of the molecular dimensions (vol 19, pg 289, 1906) [J].
Einstein, A .
ANNALEN DER PHYSIK, 1911, 34 (03) :591-592
[10]   Experimental study and modelling of viscosity of chromium containing slags [J].
Forsbacka, Lasse ;
Holappa, Lauri ;
Kondratiev, Alex ;
Jak, Evgueni .
STEEL RESEARCH INTERNATIONAL, 2007, 78 (09) :676-684