Krein spaces numerical ranges and their computer generation

被引:0
|
作者
Bebiano, N. [1 ]
Da Providencia, J. [2 ]
Nata, A. [3 ]
Soares, G. [4 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, Coimbra, Portugal
[2] Univ Coimbra, Dept Phys, CFT, Coimbra, Portugal
[3] CMUC, Dept Math, Polytech Inst, Tomar, Portugal
[4] Univ Tras Os Montes & Alto Douro, Dept Math, Coimbra, Portugal
关键词
Krein spaces; numerical range; tridiagonal matrices;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be an involutive Hermitian matrix with signature ( t, n - t), 0 <= t <= n, that is, with t positive and n - t negative eigenvalues. The Krein space numerical range of a complex matrix A of size n is the collection of complex numbers of the form xi*JA xi/xi*J xi, with xi epsilon C-n and xi*J xi not equal 0. In this note, a class of tridiagonal matrices with hyperbolical numerical range is investigated. A Matlab program is developed to generate Krein spaces numerical ranges in the finite dimensional case.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] KREIN SPACE NUMERICAL RANGES: COMPRESSIONS AND DILATIONS
    Bebiano, N.
    da Providencia, J.
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 36 - 50
  • [2] The numerical range of non-negative operators in Krein spaces
    Philipp, Friedrich
    Trunk, Carsten
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2542 - 2556
  • [3] On frames for Krein spaces
    Giribet, J. I.
    Maestripieri, A.
    Martinez Peria, F.
    Massey, P. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 122 - 137
  • [4] On the geometry of numerical ranges in spaces with an indefinite inner product
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 17 - 34
  • [5] Remarks on numerical ranges of operators in spaces with an indefinite metric
    Li, CK
    Rodman, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) : 973 - 982
  • [6] ON OPERATORS OF TRANSITION IN KREIN SPACES
    Grod, A.
    Kuzhel, S.
    Sudilovskaya, V.
    OPUSCULA MATHEMATICA, 2011, 31 (01) : 49 - 59
  • [7] Continuous frames in Krein spaces
    Elmar Wagner
    Diego Carrillo
    Kevin Esmeral
    Banach Journal of Mathematical Analysis, 2022, 16
  • [8] Learning SVM in Krein Spaces
    Loosli, Gaelle
    Canu, Stephane
    Ong, Cheng Soon
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) : 1204 - 1216
  • [9] Continuous frames in Krein spaces
    Wagner, Elmar
    Carrillo, Diego
    Esmeral, Kevin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [10] Schur complements in krein spaces
    Maestripieri, Alejandra
    Peria, Francisco Martinez
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (02) : 207 - 221