An empirical risk functional to improve learning in a neuro-fuzzy classifier

被引:26
作者
Castellano, G [1 ]
Fanelli, AM [1 ]
Mencar, C [1 ]
机构
[1] Univ Bari, Dept Informat, Bari, Italy
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2004年 / 34卷 / 01期
关键词
classification error; empirical risk functional; gradient-based learning; misclassification rate; neuro-fuzzy classifier;
D O I
10.1109/TSMCB.2003.811291
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper proposes a new Empirical Risk Functional as cost function for training neuro-fuzzy classifiers. This cost function, called Approximate Differentiable Empirical Risk Functional (ADERF), provides a differentiable approximation of the misclassification rate so that the Empirical Risk Minimization Principle formulated in Vapnik's Statistical Learning Theory can be applied. Also, based on the proposed ADERF, a learning algorithm is formulated. Experimental results on a number of benchmark classification tasks are provided and comparison to alternative approaches given.
引用
收藏
页码:725 / 731
页数:7
相关论文
共 16 条
[11]  
NAUCK D, 1997, P 7 INT FUZZ SYST AS, V4, P228
[12]  
PEDRYCZ W, 1996, PATTERN RECOGNIT LET, V17
[13]   GA-fuzzy modeling and classification: Complexity and performance [J].
Setnes, M ;
Roubos, H .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) :509-522
[14]  
*UCI, REP MACH LEARN DAT D
[15]  
Vapnik V, 1999, NATURE STAT LEARNING
[16]   An overview of statistical learning theory [J].
Vapnik, VN .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :988-999