DexYCB: A Benchmark for Capturing Hand Grasping of Objects

被引:115
作者
Chao, Yu-Wei [1 ]
Yang, Wei [1 ]
Xiang, Yu [1 ]
Molchanov, Pavlo [1 ]
Handa, Ankur [1 ]
Tremblay, Jonathan [1 ]
Narang, Yashraj S. [1 ]
Van Wyk, Karl [1 ]
Iqbal, Umar [1 ]
Birchfield, Stan [1 ]
Kautz, Jan [1 ]
Fox, Dieter [1 ,2 ]
机构
[1] NVIDIA, Santa Clara, CA 95050 USA
[2] Univ Washington, Seattle, WA 98195 USA
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.00893
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce DexYCB, a new dataset for capturing hand grasping of objects. We first compare DexYCB with a related one through cross-dataset evaluation. We then present a thorough benchmark of state-of-the-art approaches on three relevant tasks: 2D object and keypoint detection, 6D object pose estimation, and 3D hand pose estimation. Finally, we evaluate a new robotics-relevant task: generating safe robot grasps in human-to-robot object handover.(1)
引用
收藏
页码:9040 / 9049
页数:10
相关论文
共 50 条
  • [1] [Anonymous], 2017, SIGGRAPH ASIA, DOI DOI 10.1145/3130800.3130883
  • [2] [Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00469
  • [3] [Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.01110
  • [4] [Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00664
  • [5] Armagan Anil, 2020, ECCV
  • [6] Brahmbhatt S., 2020, P EUR C COMP VIS, P361
  • [7] CORONA E, 2020, CVPR, P5030, DOI DOI 10.1109/CVPR42600.2020.00508
  • [8] Dandan Shan, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P9866, DOI 10.1109/CVPR42600.2020.00989
  • [9] Deng XK, 2019, ROBOTICS: SCIENCE AND SYSTEMS XV
  • [10] Eppner C., 2019, ISRR