Local well-posedness for quasi-linear NLS with large Cauchy data on the circle

被引:20
作者
Feola, R. [1 ]
Iandoli, F. [1 ]
机构
[1] SISSA, Trieste, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2019年 / 36卷 / 01期
关键词
NLS; Quasi-linear PDEs; Para-differential calculus; Local wellposedness; Dispersive equations; Energy method; KAM; PERTURBATIONS; EQUATIONS;
D O I
10.1016/j.anihpc.2018.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrodinger equations on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This allows to obtain a priori energy estimates on the Sobolev norms of the solutions. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:119 / 164
页数:46
相关论文
共 25 条
[1]   Control of water waves [J].
Alazard, Thomas ;
Baldi, Pietro ;
Han-Kwan, Daniel .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (03) :657-745
[2]   Gravity Capillary Standing Water Waves [J].
Alazard, Thomas ;
Baldi, Pietro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :741-830
[3]  
Alinhac S., 1986, COMMUN PARTIAL DIFFE
[4]  
Baldi P., 2017, ARXIV170801517
[5]   Controllability of quasi-linear Hamiltonian NLS equations [J].
Baldi, Pietro ;
Haus, Emanuele ;
Montalto, Riccardo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) :1786-1840
[6]   KAM for autonomous quasi-linear perturbations of KdV [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06) :1589-1638
[7]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[8]   Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type [J].
Baldi, Pietro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :33-77
[9]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[10]  
Berti M., 2017, ARXIV170204674