Lung CT Image Segmentation Using Deep Neural Networks

被引:188
作者
Ait Skourt, Brahim [1 ]
El Hassani, Abdelhamid [1 ]
Majda, Aicha [1 ]
机构
[1] Fac Sci & Technol Fez, Dept Comp Sci, Fes, Morocco
来源
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017) | 2018年 / 127卷
关键词
Lung CT; Image Segmentation; Deep Learning; U-net;
D O I
10.1016/j.procs.2018.01.104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung CT image segmentation is a necessary initial step for lung image analysis, it is a prerequisite step to provide an accurate lung CT image analysis such as lung cancer detection. In this work, we propose a lung CT image segmentation using the U-net architecture, one of the most used architectures in deep learning for image segmentation. The architecture consists of a contracting path to extract high-level information and a symmetric expanding path that recovers the information needed. This network can be trained end-to-end from very few images and outperforms many methods. Experimental results show an accurate segmentation with 0.9502 Dice-Coefficient index. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 14 条
  • [1] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [2] [Anonymous], 2015, ARXIV151100561
  • [3] Garcia A, 2017, APPR DIGIT GAME STUD, V5, P1
  • [4] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [5] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [6] Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
    Hu, SY
    Hoffman, EA
    Reinhardt, JM
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (06) : 490 - 498
  • [7] Kalinovsky Alexander., 2016, LUNG IMAGE SSGMENTAT
  • [8] Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT
    Korfiatis, P.
    Skiadopoulos, S.
    Sakellaropoulos, P.
    Kalogeropoulou, C.
    Costaridou, L.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2007, 80 (960) : 996 - 1005
  • [9] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [10] Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume
    Nakagomi, Keita
    Shimizu, Akinobu
    Kobatake, Hidefumi
    Yakami, Masahiro
    Fujimoto, Koji
    Togashi, Kaori
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (01) : 62 - 77