Subspace clustering of high dimensional data

被引:0
作者
Domeniconi, C [1 ]
Papadopoulos, D [1 ]
Gunopulos, D [1 ]
Ma, S [1 ]
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
来源
Proceedings of the Fourth SIAM International Conference on Data Mining | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering suffers from the curse of dimensionality, and similarity functions that use all input features with equal relevance may not be effective. We introduce an algorithm that discovers clusters in subspaces spanned by different combinations of dimensions via local weightings of features. This approach avoids the risk of loss of information encountered in global dimensionality reduction techniques, and does not assume any data distribution model. Our method associates to each cluster a weight vector, whose values capture the relevance of features within the corresponding cluster. We experimentally demonstrate the gain in perfomance our method achieves, using both synthetic and real data sets. In particular, our results show the feasibility of the proposed technique to perform simultaneous clustering of genes and conditions in microarray data.
引用
收藏
页码:517 / 521
页数:5
相关论文
共 11 条
[1]  
AGARWAL C, 1999, SIGMOD
[2]  
AGGARWAL C, 2000, SIGMOD
[3]  
Agrawal R., 1998, SIGMOD
[4]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[5]   LOCAL LEARNING ALGORITHMS [J].
BOTTOU, L ;
VAPNIK, V .
NEURAL COMPUTATION, 1992, 4 (06) :888-900
[6]  
CHENG Y, 2000, INT C INT SYST MOL B
[7]  
DOMENICONI C, 2002, THESIS COMPUTER SCI
[8]  
Duda R. O., 1973, PATTERN CLASSIFICATI
[9]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[10]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548