Sequential Bayesian inference for vector autoregressions with stochastic volatility

被引:3
作者
Bognanni, Mark [1 ]
Zito, John [2 ]
机构
[1] Fed Reserve Bank Cleveland, Res Dept, POB 6387, Cleveland, OH 44101 USA
[2] Rice Univ, Dept Stat, POB 1892, Houston, TX 77251 USA
关键词
Vector autoregressions; Stochastic volatility; Sequential Monte Carlo; Particle filter; Rao-Blackwellization; MONTE-CARLO METHODS; MODELS;
D O I
10.1016/j.jedc.2020.103851
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a sequential Monte Carlo (SMC) algorithm for Bayesian inference in vector autoregressions with stochastic volatility (VAR-SV). The algorithm builds particle approximations to the sequence of the model's posteriors, adapting the particles from one approximation to the next as the window of available data expands. The parallelizability of the algorithm's computations allows the adaptations to occur rapidly. Our particular algorithm exploits the ability to marginalize many parameters from the posterior analytically and embeds a known Markov chain Monte Carlo (MCMC) algorithm for the model as an effective mutation kernel for fighting particle degeneracy. We show that, relative to using MCMC alone, our algorithm increases the precision of inference while reducing computing time by an order of magnitude when estimating a medium-scale VAR-SV model. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:35
相关论文
共 45 条
[1]  
Aruoba S.B., 2018, COMPARISON PROGRAMMI
[2]   A comparison of programming languages in macroeconomics [J].
Aruoba, S. Boragan ;
Fernandez-Villaverde, Jesus .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 58 :265-273
[3]   Dynamic conditional independence models and Markov chain Monte Carlo methods [J].
Berzuini, C ;
Best, NG ;
Gilks, WR ;
Larizza, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1403-1412
[4]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[5]  
Bognanni M., 2018, Working Paper No. 18-11, DOI [10.26509/Frbc-Wp-201811, DOI 10.26509/FRBC-WP-201811]
[6]   A sequential Monte Carlo approach to inference in multiple-equation Markov-switching models [J].
Bognanni, Mark ;
Herbst, Edward .
JOURNAL OF APPLIED ECONOMETRICS, 2018, 33 (01) :126-140
[7]   Common Drifting Volatility in Large Bayesian VARs [J].
Carriero, Andrea ;
Clark, Todd E. ;
Marcellino, Massimiliano .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (03) :375-390
[8]  
Casarin R, 2015, J STAT SOFTW, V68, P1
[9]   Bayesian model comparison for time-varying parameter VARs with stochastic volatility [J].
Chan, Joshua C. C. ;
Eisenstat, Eric .
JOURNAL OF APPLIED ECONOMETRICS, 2018, 33 (04) :509-532
[10]   Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference [J].
Chopin, N .
ANNALS OF STATISTICS, 2004, 32 (06) :2385-2411