Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded

被引:11
作者
Guesmia, Senoussi [1 ,2 ]
机构
[1] Univ Libre Bruxelles, Serv Metrol Nucl, B-1050 Brussels, Belgium
[2] Lab Math Informat & Applicat, F-68093 Mulhouse, France
关键词
hyperbolic problems; asymptotic behavior; cylindrical domains;
D O I
10.1016/j.jmaa.2007.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here the asymptotic behavior of the solution of a hyperbolic problem defined on a cylindrical domain [0, T] x (-l, l)(p) x omega subset of [0, T] x R-n when l -> infinity. We show that, under very general assumptions, the solution of this problem converges faster than any power of 1/l towards the solution of another hyperbolic problem, defined on [0, T] x omega, in any bounded subdomain. We give both necessary and sufficient conditions for this convergence to occur. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1190 / 1212
页数:23
相关论文
共 12 条
[1]  
Chipot M, 2001, DISCRETE CONT DYN-B, V1, P319
[2]   On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded [J].
Chipot, M ;
Rougirel, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (01) :15-44
[3]  
CHIPOT M, 2000, C R ACAD SCI PARIS S, V1331, P435
[4]  
CHIPOT M, 2004, P INT C NONL PDES TH, P16
[5]  
CHIPOT M, 2002, GOES PLUS INFINITY
[6]  
CHIPOT M, 2000, P 3 WORLD C NONL A 1, V47, P3
[7]  
FREDRICHS KO, 1954, COMMUN PUR APPL MATH, V7, P345
[9]  
KHAK KV, 1972, ANAL FOURIER OPERATE
[10]  
Ladyzhenskaya O.A., 1984, BOUNDARY VALUE PROBL