On the convergence of a finite volume method for the Navier-Stokes-Fourier system

被引:8
作者
Feireisl, Eduard [1 ,2 ]
Lukacova-Medvid'ova, Maria [3 ]
Mizerova, Hana [1 ,4 ]
She, Bangwei [1 ,5 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
[2] Tech Univ Berlin, Str 17 Juni, D-10587 Berlin, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
[4] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[5] Charles Univ Prague, Fac Math & Phys, Dept Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
compressible Navier-Stokes-Fourier system; finite volume method; upwinding; convergence; Young measures; dissipative measure-valued solutions; weak-strong uniqueness; NUMERICAL-METHOD; SCHEME; STABILITY; EQUATIONS;
D O I
10.1093/imanum/draa060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of the paper is to study the convergence of finite volume approximations of the Navier-Stokes-Fourier system describing the motion of compressible, viscous and heat-conducting fluids. The numerical flux uses upwinding with an additional numerical diffusion of order O(h(epsilon+1)), 0 < epsilon < 1. The approximate solutions are piecewise constant functions with respect to the underlying polygonal mesh. We show that the numerical solutions converge strongly to the classical solution as long as the latter exists. On the other hand, any uniformly bounded sequence of numerical solutions converges unconditionally to the classical solution of the Navier-Stokes-Fourier system without assuming a priori its existence. A similar unconditional convergence result is obtained for a sequence of numerical solutions with uniformly bounded densities and temperatures if the bulk viscosity vanishes.
引用
收藏
页码:2388 / 2422
页数:35
相关论文
共 39 条
  • [1] BALL JM, 1989, LECT NOTES PHYS, V344, P207
  • [2] A direct Eulerian GRP scheme for compressible fluid flows
    Ben-Artzi, Matania
    Li, Jiequan
    Warnecke, Gerald
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) : 19 - 43
  • [3] STABILITY OF STRONG SOLUTIONS TO THE NAVIER-STOKES-FOURIER SYSTEM
    Berezina, Jan
    Feireisl, Eduard
    Novotny, Antonin
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1761 - 1785
  • [4] TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK
    COCKBURN, B
    SHU, CW
    [J]. MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 411 - 435
  • [5] Dolejsi V, 2015, SPR SER COMPUT MATH, V48, P1, DOI 10.1007/978-3-319-19267-3
  • [6] Eymard R, 2000, HDBK NUM AN, V7, P713
  • [7] Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) : 923 - 966
  • [8] Convergence of a finite volume scheme for the compressible Navier-Stokes system
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    She, Bangwei
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (06): : 1957 - 1979
  • [9] A finite volume scheme for the Euler system inspired by the two velocities approach
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    [J]. NUMERISCHE MATHEMATIK, 2020, 144 (01) : 89 - 132
  • [10] Convergence of a Mixed Finite Element-Finite Volume Scheme for the Isentropic Navier-Stokes System via Dissipative Measure-Valued Solutions
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (03) : 703 - 730