Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23V in 2D perovskite solar cells

被引:46
作者
Chen, Jiehuan [1 ]
Lian, Xiaomei [1 ]
Zhang, Yingzhu [1 ]
Yang, Weitao [1 ]
Li, Jun [1 ]
Qin, Minchao [2 ]
Lu, Xinhui [2 ]
Wu, Gang [1 ]
Chen, Hongzheng [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOVOLTAIC PERFORMANCE; HALIDE PEROVSKITES; LAYER; STABILITY; ELECTRON; BANDGAP; FILM;
D O I
10.1039/c8ta06925e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hole transport layer (HTL) and electron transport layer (ETL) play critical roles in perovskite solar cells (PVSCs). However, few studies have been done to optimize these two charge transport layers for two-dimensional (2D) PVSCs. Here in this work, both the HTL and ETL of PVSCs based on 2D perovskite (CH3(CH2)(2)NH3)(2)(CH3NH3)(2)Pb3I10 (BA(2)MA(2)Pb(3)I(10)) are optimized to achieve high open-circuit voltage (V-oc) and power conversion efficiency (PCE). The solution-processed NiOx was employed as the HTL to fabricate efficient 2D PVSCs with the structure of indium tin oxide (ITO)/HTL/BA(2)MA(2)Pb(3)I(10)/ETL/bathocuproine (BCP)/Ag. The PCE of the device with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) as the ETL is increased from 7.99% to 11.01% when NiOx was applied as the HTL instead of the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The improved performance was attributed to the better matched energy levels and the reduced trap state for NiOx based devices. Considering the deeper HOMO (the highest occupied molecular orbital) level of ICBA (indene-C-60 bisadduct), ICBA was mixed with PCBM as the ETL to reduce the interfacial charge recombination between the perovskite and ETL. This strategy further boosted the PCE to 12.07% with the highest V-oc of 1.23 V for 2D PVSCs so far. This work suggests the potential of interfacial engineering for the performance improvement of 2D PVSCs.
引用
收藏
页码:18010 / 18017
页数:8
相关论文
共 50 条
  • [1] Pure 2D Perovskite Formation by Interfacial Engineering Yields a High Open-Circuit Voltage beyond 1.28 V for 1.77-eV Wide-Bandgap Perovskite Solar Cells
    He, Rui
    Yi, Zongjin
    Luo, Yi
    Luo, Jincheng
    Wei, Qi
    Lai, Huagui
    Huang, Hao
    Zou, Bingsuo
    Cui, Guangyao
    Wang, Wenwu
    Xiao, Chuanxiao
    Ren, Shengqiang
    Chen, Cong
    Wang, Changlei
    Xing, Guichuan
    Fu, Fan
    Zhao, Dewei
    ADVANCED SCIENCE, 2022, 9 (36)
  • [2] Polyacrylonitrile-Coordinated Perovskite Solar Cell with Open-Circuit Voltage Exceeding 1.23 V
    Chen, Chen
    Wang, Xiao
    Li, Zhipeng
    Du, Xiaofan
    Shao, Zhipeng
    Sun, Xiuhong
    Liu, Dachang
    Gao, Caiyun
    Hao, Lianzheng
    Zhao, Qiangqiang
    Zhang, Bingqian
    Cui, Guanglei
    Pang, Shuping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (08)
  • [3] Record Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
    Gharibzadeh, Saba
    Nejand, Bahram Abdollahi
    Jakoby, Marius
    Abzieher, Tobias
    Hauschild, Dirk
    Moghadamzadeh, Somayeh
    Schwenzer, Jonas A.
    Brenner, Philipp
    Schmager, Raphael
    Haghighirad, Amir Abbas
    Weinhardt, Lothar
    Lemmer, Uli
    Richards, Bryce S.
    Howard, Ian A.
    Paetzold, Ulrich W.
    ADVANCED ENERGY MATERIALS, 2019, 9 (21)
  • [4] Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency
    Yavari, Mozhgan
    Mazloum-Ardakani, Mohammad
    Gholipour, Somayeh
    Tavakoli, Mohammad Mahdi
    Taghavinia, Nima
    Hagfeldt, Anders
    Tress, Wolfgang
    ACS OMEGA, 2018, 3 (05): : 5038 - 5043
  • [5] Efficient Organic Solar Cells with a High Open-Circuit Voltage of 1.34 V
    Gao, Bowei
    Yao, Huifeng
    Hong, Ling
    Hou, Jianhui
    CHINESE JOURNAL OF CHEMISTRY, 2019, 37 (11) : 1153 - 1157
  • [6] Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor
    Ryu, Seungchan
    Noh, Jun Hong
    Jeon, Nam Joong
    Kim, Young Chan
    Yang, Seok
    Seo, Jangwon
    Seok, Sang Il
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) : 2614 - 2618
  • [7] Recent Advances in Interface Engineering for Enhanced Open-Circuit Voltage Regulation in Perovskite Solar Cells
    Zhang, Siqi
    Ren, Fumeng
    Sun, Zhenxing
    Liu, Xiaoxuan
    Tan, Zhengtian
    Liu, Wenguang
    Chen, Rui
    Liu, Zonghao
    Chen, Wei
    SMALL METHODS, 2024, 8 (07)
  • [8] Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells
    Niu, Tianqi
    Lu, Jing
    Jia, Xuguang
    Xu, Zhuo
    Tang, Ming-Chun
    Barrit, Dounya
    Yuan, Ningyi
    Ding, Jianning
    Zhang, Xu
    Fan, Yuanyuan
    Luo, Tao
    Zhang, Yalan
    Smilgies, Detlef-M.
    Liu, Zhike
    Amassian, Aram
    Jin, Shengye
    Zhao, Kui
    Liu, Shengzhong
    NANO LETTERS, 2019, 19 (10) : 7181 - 7190
  • [9] All-Inorganic Perovskite Solar Cells With Both High Open-Circuit Voltage and Stability
    Zhang, Lei
    Hu, Tianle
    Li, Jinglei
    Zhang, Lin
    Li, Hongtao
    Lu, Zhilun
    Wang, Ge
    FRONTIERS IN MATERIALS, 2020, 6 (06):
  • [10] High Open Circuit Voltage Over 1 V Achieved in Tin-Based Perovskite Solar Cells with a 2D/3D Vertical Heterojunction
    Wang, Tianyue
    Loi, Hok-Leung
    Cao, Jiupeng
    Qin, Zhaotong
    Guan, Zhiqiang
    Xu, Yang
    Cheng, Haiyang
    Li, Mitch Guijun
    Chun-Sing Lee
    Lu, Xinhui
    Yan, Feng
    ADVANCED SCIENCE, 2022, 9 (18)