An Improved Algorithm for Detecting Pneumonia Based on YOLOv3

被引:21
作者
Yao, Shangjie [1 ]
Chen, Yaowu [2 ]
Tian, Xiang [3 ]
Jiang, Rongxin [4 ]
Ma, Shuhao [5 ]
机构
[1] Zhejiang Univ, Inst Adv Digital Technol & Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[3] Zhejiang Prov Key Lab Network Multimedia Technol, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, Minist Educ China, Embedded Syst Engn Res Ctr, Hangzhou 310027, Peoples R China
[5] Dalian Maritime Univ, Inst Informat Sci & Technol Instrumentat, Dalian 116026, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 05期
关键词
convolutional neural network; pneumonia detection; medical image;
D O I
10.3390/app10051818
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pneumonia is a disease that develops rapidly and seriously threatens the survival and health of human beings. At present, the computer-aided diagnosis (CAD) of pneumonia is mostly based on binary classification algorithms that cannot provide doctors with location information. To solve this problem, this study proposes an end-to-end highly efficient algorithm for the detection of pneumonia based on a convolutional neural network-Pneumonia Yolo (PYolo). This algorithm is an improved version of the Yolov3 algorithm for X-ray image data of the lungs. Dilated convolution and an attention mechanism are used to improve the detection results of pneumonia lesions. In addition, double K-means is used to generate an anchor box to improve the localization accuracy. The algorithm obtained 46.84 mean average precision (mAP) on the X-ray image dataset provided by the Radiological Society of North America (RSNA), surpassing other detection algorithms. Thus, this study proposes an improved algorithm that can provide doctors with location information on lesions for the detection of pneumonia.
引用
收藏
页数:16
相关论文
共 25 条
  • [1] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [2] Chen L.-C., 2017, ARXIV PREPRINT ARXIV, DOI DOI 10.48550/ARXIV.1706.05587
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition
    Fu, Jianlong
    Zheng, Heliang
    Mei, Tao
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4476 - 4484
  • [5] Girshick R., 2014, P IEEE C COMPUTER VI, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/cvpr.2014.81]
  • [6] Hu J, 2017, CIVIL, ARCHITECTURE AND ENVIRONMENTAL ENGINEERING, VOLS 1 AND 2, P13
  • [7] Ioffe S, 2015, ARXIV, DOI DOI 10.48550/ARXIV.1502.03167
  • [8] Li DP, 2015, PROC CVPR IEEE, P213, DOI 10.1109/CVPR.2015.7298617
  • [9] Lin T. Y., 2017, Feature pyramid networks for object detection, P2117, DOI DOI 10.1109/CVPR.2017.106
  • [10] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37