Quantile Autoregression for Censored Data

被引:4
作者
Choi, Seokwoo Jake [1 ]
Portnoy, Stephen [2 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
关键词
Censored time series; autoregression; quantile; self-consistent; Kaplan-Meier;
D O I
10.1111/jtsa.12174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantile autoregression (QAR) is particularly attractive for censored data. However, unlike the standard regression models, the autoregressive models must take account of censoring on both response and regressors. In this article, we show that the existing censored quantile regression methods produce consistent estimators for QAR models when using only the fully observed regressors. A new algorithm is proposed to provide a censored QAR estimator by adopting imputation methods. The algorithm redistributes probability mass of censored points appropriately and iterates towards self-consistent solutions. Monte Carlo simulations and empirical applications are conducted to demonstrate merits of the proposed method.
引用
收藏
页码:603 / 623
页数:21
相关论文
共 16 条
[1]  
[Anonymous], 2014, THESIS
[2]   Estimating a distribution function for censored time series data [J].
Cai, ZW .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 78 (02) :299-318
[3]  
Hallin M, 1999, ANN STAT, V27, P1385
[4]  
Hallock D., 2009, 0903041 DEP EC
[5]   LIMIT THEORY FOR AUTOREGRESSIVE-PARAMETER ESTIMATES IN AN INFINITE-VARIANCE RANDOM-WALK [J].
KNIGHT, K .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (03) :261-278
[6]  
Knight K, 1998, ANN STAT, V26, P755
[7]  
Koenker R., 2005, Quantile Regression, DOI [10.1017/CBO9780511754098, DOI 10.1017/CBO9780511754098]
[8]   Quantile autoregression [J].
Koenker, Roger ;
Xiao, Zhijie .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) :980-990
[9]   AUTOREGRESSION QUANTILES AND RELATED RANK-SCORES PROCESSES [J].
KOUL, HL ;
SALEH, AKME .
ANNALS OF STATISTICS, 1995, 23 (02) :670-689
[10]   Censored time series analysis with autoregressive moving average models [J].
Park, Jung Wook ;
Genton, Marc G. ;
Ghosh, Sujit K. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01) :151-168