Ground-level NO2 concentration estimation based on OMI tropospheric NO2 and its spatiotemporal characteristics in typical regions of China

被引:24
作者
Chi, Yulei [1 ,2 ]
Fan, Meng [2 ]
Zhao, Chuanfeng [1 ]
Sun, Lin [3 ]
Yang, Yikun [1 ]
Yang, Xingchuan [1 ]
Tao, Jinhua [2 ]
机构
[1] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[3] Shandong Univ Sci & Technol, Geomat Coll, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Ground-level NO2; OMI; Mixed effect model; Spatio-temporal analysis; China; LAND-USE REGRESSION; FINE PARTICULATE MATTER; NITROGEN-DIOXIDE; AIR-POLLUTION; PM2.5; CONCENTRATIONS; RIVER DELTA; SATELLITE; QUALITY; MODEL; OZONE;
D O I
10.1016/j.atmosres.2021.105821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Although the ground-level NO2 measurement from air quality monitoring sites is relatively accurate, it is a challenge to obtain continuous spatial coverage due to the discrete distribution of sites. Thus, the tropospheric column NO2 amount from satellites with wide spatial and temporal coverage and higher resolution has been increasingly used to estimate ground-level NO2. However, most estimation methods were performed spontaneously using a simple linear model throughout the study period. These simplified models improve the efficiency of model development and enhance the generality of the model application, but they ignore the fact that contributors to changes of ground-level NO2 are not always consistent with time. This study considered the fixed and random effects of influencing factors and developed a mixed effect model (MEM) to estimate the ground-level NO2. By using the data of tropospheric NO2 in China from January 1, 2014 to June 30, 2020 and other multivariate auxiliary data such as meteorological elements and terrain elevation, the reliability of daily ground-level NO2 in typical populated areas of China estimated by the MEM was evaluated. The average of monthly R2 of 10fold CV in each study area during 2014-2020 is greater than 0.60 and the proportion of R2 greater than 0.7 is about 71%, suggesting the reliability of MEM. It is found that the ground-level NO2 distribution characteristics of each study area are more distinct, and the influential factors are also different. In addition, associated with the air quality control policies and emission reduction measures in various regions, the ground-level NO2 in each study area has shown an overall downward trend during 2014-2019. The uncertainty of daily-scale meteorological elements and boundary layer conditions can lead to varying degrees of deviations in daily-scale predictions of ground-level NO2. Validation with the station NO2 observations demonstrates that the ground-level NO2 prediction at seasonal time scale (R2 = 0.81, RMSE = 3.86 mu g/m3) performs better than those at time scales of daily and monthly (R2 = 0.65, and 0.75, RMSE = 7.92, and 6.24 mu g/m3). Therefore, the method of averaging can be used to improve the accuracy of ground-level NO2 predictions on individual dates. In summary, this study shows that MEM is a promising ground-level NO2 modeling method, and is effective for air pollution mapping in a large geographic region.
引用
收藏
页数:14
相关论文
共 85 条
[1]   Near-real time retrieval of tropospheric NO2 from OMI [J].
Boersma, K. F. ;
Eskes, H. J. ;
Veefkind, J. P. ;
Brinksma, E. J. ;
Van der A, R. J. ;
Sneep, M. ;
van den Oord, G. H. J. ;
Levelt, P. F. ;
Stammes, P. ;
Gleason, J. F. ;
Bucsela, E. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (08) :2103-2118
[2]   An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument [J].
Boersma, K. F. ;
Eskes, H. J. ;
Dirksen, R. J. ;
van der A, R. J. ;
Veefkind, J. P. ;
Stammes, P. ;
Huijnen, V. ;
Kleipool, Q. L. ;
Sneep, M. ;
Claas, J. ;
Leitao, J. ;
Richter, A. ;
Zhou, Y. ;
Brunner, D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (09) :1905-1928
[3]   Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns:: Observing the diurnal evolution of chemistry and emissions from space [J].
Boersma, K. Folkert ;
Jacob, Daniel J. ;
Eskes, Henk J. ;
Pinder, Robert W. ;
Wang, Jun ;
van der A, Ronald J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D16)
[4]   Error analysis for tropospheric NO2 retrieval from space -: art. no. D04311 [J].
Boersma, KF ;
Eskes, HJ ;
Brinksma, EJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D4)
[5]   METEOROLOGY, AIR QUALITY, AND HEALTH IN LONDON The ClearfLo Project [J].
Bohnenstengel, S. I. ;
Belcher, S. E. ;
Aiken, A. ;
Allan, J. D. ;
Allen, G. ;
Bacak, A. ;
Bannan, T. J. ;
Barlow, J. F. ;
Beddows, D. C. S. ;
Bloss, W. J. ;
Booth, A. M. ;
Chemel, C. ;
Coceal, O. ;
Di Marco, C. F. ;
Dubey, M. K. ;
Faloon, K. H. ;
Fleming, Z. L. ;
Furger, M. ;
Gietl, J. K. ;
Graves, R. R. ;
Green, D. C. ;
Grimmond, C. S. B. ;
Halios, C. H. ;
Hamilton, J. F. ;
Harrison, R. M. ;
Heal, M. R. ;
Heard, D. E. ;
Helfter, C. ;
Herndon, S. C. ;
Holmes, R. E. ;
Hopkins, J. R. ;
Jones, A. M. ;
Kelly, F. J. ;
Kotthaus, S. ;
Langford, B. ;
Lee, J. D. ;
Leigh, R. J. ;
Lewis, A. C. ;
Lidster, R. T. ;
Lopez-Hilfiker, F. D. ;
McQuaid, J. B. ;
Mohr, C. ;
Monks, P. S. ;
Nemitz, E. ;
Ng, N. L. ;
Percival, C. J. ;
Prevot, A. S. H. ;
Ricketts, H. M. A. ;
Sokhi, R. ;
Stone, D. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (05) :779-804
[6]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[7]  
Bucsela E.J., 2008, J GEOPHYS RES-ATMOS, V113
[8]   Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities [J].
Burnett, RT ;
Stieb, D ;
Brook, JR ;
Cakmak, S ;
Dales, R ;
Raizenne, M ;
Vincent, R ;
Dann, T .
ARCHIVES OF ENVIRONMENTAL HEALTH, 2004, 59 (05) :228-236
[9]   Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012 [J].
Chen, Huopo ;
Wang, Huijun .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (12) :5895-5909
[10]   A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide [J].
Chen, Jie ;
de Hoogh, Kees ;
Gulliver, John ;
Hoffmann, Barbara ;
Hertel, Ole ;
Ketzel, Matthias ;
Bauwelinck, Mariska ;
van Donkelaar, Aaron ;
Hvidtfeldt, Ulla A. ;
Katsouyanni, Klea ;
Janssen, Nicole A. H. ;
Martin, Randall V. ;
Samoli, Evangelia ;
Schwartz, Per E. ;
Stafoggia, Massimo ;
Bellander, Tom ;
Strak, Maciek ;
Wolf, Kathrin ;
Vienneau, Danielle ;
Vermeulen, Roel ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENT INTERNATIONAL, 2019, 130