Two families of nonstandard Poisson structures for Newton equations

被引:17
作者
Marciniak, K [1 ]
Rauch-Wojciechowski, S [1 ]
Wojciechowski, R [1 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
D O I
10.1063/1.532571
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two families of nonstandard two-dimensional Poisson structures for systems of Newton equations are studied. They are closely related either with separable systems or with the so-called quasi-Lagrangian systems. A theorem characterizing the general form of bi-Hamiltonian formulation for separable systems in two and in n dimensions is formulated and proved. (C) 1998 American Institute of Physics. [S0022-2488(98)03810-9].
引用
收藏
页码:5292 / 5306
页数:15
相关论文
共 13 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[3]  
Arnold V. I., 2013, Mathematical Methods of Classical Mechanics, V60
[4]  
Garnier R., 1919, Rend. Circ. Mathem. Palermo, V43, P155, DOI [10.1007/BF03014668, 10.1007/bf03014668]
[5]   SEPARATION OF VARIABLES ON N-DIMENSIONAL RIEMANNIAN-MANIFOLDS .1. THE N-SPHERE SN AND EUCLIDEAN N-SPACE RN [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (07) :1721-1736
[6]   WHEN IS A HAMILTONIAN SYSTEM SEPARABLE [J].
MARSHALL, I ;
WOJCIECHOWSKI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (06) :1338-1346
[7]  
Olver PJ, 1986, APPL LIE GROUPS DIFF
[8]  
RAUCHWOJCIECHOW.S, UNPUB CRITERION SEPA
[9]  
RAUCHWOJCIECHOW.S, UNPUB QUASILAGRANGIA
[10]   A BI-HAMILTONIAN FORMULATION FOR SEPARABLE POTENTIALS AND ITS APPLICATION TO THE KEPLER-PROBLEM AND THE EULER PROBLEM OF 2 CENTERS OF GRAVITATION [J].
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1991, 160 (02) :149-154