8-Fold Helically Corrugated Interaction Region for High Power Gyroresonant THz Sources

被引:7
作者
Donaldson, Craig R. [1 ]
Zhang, Liang [1 ]
Harris, Michael [2 ]
Beardsley, Matthew J. [2 ]
Huggard, Peter G. [2 ]
Whyte, Colin G. [1 ]
Cross, Adrian W. [1 ]
He, Wenlong [3 ]
机构
[1] Univ Strathclyde, Scottish Univ Phys Alliance, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[2] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[3] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
Aluminum; Frequency measurement; Couplings; Optical waveguides; Dispersion; Electron beams; Resonant frequency; Helically corrugated waveguide; precise manufacture; THz sources; TRAVELING-WAVE AMPLIFIER; BAND; GUIDE;
D O I
10.1109/LED.2021.3105435
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A manufacturing study of a 0.372 THz 8-fold (8F) helically corrugated interaction region (HCIR) and measurement of its wave dispersion characteristics are reported. This demonstrates the structure's suitability as the electron beam / electromagnetic wave interaction region in a high power frequency tunable Gyroresonant THz source. The 8F HCIR has an eigenmode, which is ideal for broadband tuning, created by the coupling of the TE61 and TE23 modes. Maximum power handling of 14 times larger than a 3-fold HCIR at the same frequency is calculated. A TE11 to TE61 7-fold (7F) helically corrugated waveguide (HCW) mode converter, needed to measure the wave dispersion of the 8F HCIR, was designed and constructed. Negative aluminium mandrels of the 7F HCW mode converter and 8F HCIR were manufactured. Copper structures were constructed through electroforming. The measured wave dispersion of the 0.372 THz 8F HCIR agreed well with simulated dispersion characteristics.
引用
收藏
页码:1544 / 1547
页数:4
相关论文
共 21 条
  • [1] Terahertz band: Next frontier for wireless communications
    Akyildiz, Ian F.
    Jornet, Josep Miquel
    Han, Chong
    [J]. PHYSICAL COMMUNICATION, 2014, 12 : 16 - 32
  • [2] High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide
    Bratman, VL
    Cross, AW
    Denisov, GG
    He, W
    Phelps, ADR
    Ronald, K
    Samsonov, SV
    Whyte, CG
    Young, AR
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (12) : 2746 - 2749
  • [3] Overview of research on the gyrotron traveling-wave amplifier
    Chu, KR
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (03) : 903 - 908
  • [4] Method for Synthesis of Waveguide Mode Converters
    G. G. Denisov
    G. I. Kalynova
    D. I. Sobolev
    [J]. Radiophysics and Quantum Electronics, 2004, 47 (8) : 615 - 620
  • [5] Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth
    Denisov, GG
    Bratman, VL
    Phelps, ADR
    Samsonov, SV
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) : 508 - 518
  • [6] Gyrotron traveling wave amplifier with a helical interaction waveguide
    Denisov, GG
    Bratman, VL
    Cross, AW
    He, W
    Phelps, ADR
    Ronald, K
    Samsonov, SV
    Whyte, CG
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5680 - 5683
  • [7] CNC Machined Helically Corrugated Interaction Region for a THz Gyrotron TravelingWave Amplifier
    Donaldson, Craig R.
    Zhang, Liang
    Beardsley, Mat
    Harris, Michael
    Huggard, Peter G.
    He, Wenlong
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2018, 8 (01) : 85 - 89
  • [8] Stable, high efficiency gyrotron backward-wave oscillator
    Fan, C. T.
    Chang, T. H.
    Pao, K. F.
    Chu, K. R.
    Chen, S. H.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (09)
  • [9] Relativistic X-Band BWO with 3-GW output power
    Gunin, AV
    Klimov, AI
    Korovin, SD
    Kurkan, IK
    Pegel, IV
    Polevin, SD
    Roitman, AM
    Rostov, VV
    Stepchenko, AS
    Totmeninov, EM
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) : 326 - 331
  • [10] Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region
    He, W.
    Donaldson, C. R.
    Zhang, L.
    Ronald, K.
    Phelps, A. D. R.
    Cross, A. W.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (18)