Information-theoretic differential geometry of quantum phase transitions

被引:377
作者
Zanardi, Paolo [1 ]
Giorda, Paolo
Cozzini, Marco
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Inst Sci Interchange, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1103/PhysRevLett.99.100603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The manifold of coupling constants parametrizing a quantum Hamiltonian is equipped with a natural Riemannian metric with an operational distinguishability content. We argue that the singularities of this metric are in correspondence with the quantum phase transitions featured by the corresponding system. This approach provides a universal conceptual framework to study quantum critical phenomena which is differential geometric and information theoretic at the same time.
引用
收藏
页数:4
相关论文
共 28 条
  • [1] [Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
  • [2] Quantum information and computation
    Bennett, CH
    DiVincenzo, DP
    [J]. NATURE, 2000, 404 (6775) : 247 - 255
  • [3] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [4] GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS
    BRODY, D
    RIVIER, N
    [J]. PHYSICAL REVIEW E, 1995, 51 (02) : 1006 - 1011
  • [5] Sublattice entanglement and quantum phase transitions in antiferromagnetic spin chains
    Chen, Yan
    Zanardi, Paolo
    Wang, Z. D.
    Zhang, F. C.
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [6] Quantum phase transitions and quantum fidelity in free fermion graphs
    Cozzini, Marco
    Giorda, Paolo
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW B, 2007, 75 (01)
  • [7] HAMMA A, ARXIVQUANTPH0602091
  • [8] Huang K., 1987, STAT MECH
  • [9] FIDELITY FOR MIXED QUANTUM STATES
    JOZSA, R
    [J]. JOURNAL OF MODERN OPTICS, 1994, 41 (12) : 2315 - 2323
  • [10] Nakahara M., 1990, Graduate Stu dent Series in Physics