Comparing the commutative and non-commutative resolutions for determinantal varieties of skew symmetric and symmetric matrices

被引:0
作者
Spenko, Spela [1 ]
Van den Bergh, Michel [2 ,3 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Hasselt, Dept Math, Martelarenlaan 42, B-3500 Hasselt, Belgium
[3] Res Fdn Flanders, Brussels, Belgium
关键词
Non-commutative resolutions; Determinantal varieties;
D O I
10.1016/j.aim.2017.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y be the variety of (skew) symmetric n x n-matrices of rank <= r. In paper we construct a full faithful embedding between the derived category of a non-commutative resolution of Y, constructed earlier by the authors, and the derived category of the classical Springer resolution of Y. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:350 / 370
页数:21
相关论文
共 22 条
[1]   Wonderful resolutions and categorical crepant resolutions of singularities [J].
Abuaf, Roland .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 :115-141
[2]   Non-commutative Desingularization of Determinantal Varieties, II: Arbitrary Minors [J].
Buchweitz, Ragnar-Olaf ;
Leuschke, Graham J. ;
Van den Bergh, Michel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (09) :2748-2812
[3]   On the derived category of Grassmannians in arbitrary characteristic [J].
Buchweitz, Ragnar-Olaf ;
Leuschke, Graham J. ;
Van den Bergh, Michel .
COMPOSITIO MATHEMATICA, 2015, 151 (07) :1242-1264
[4]   Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras [J].
Cheng, SJ ;
Zhang, RB .
ADVANCES IN MATHEMATICS, 2004, 182 (01) :124-172
[5]   Window shifts, flop equivalences and Grassmannian twists [J].
Donovan, Will ;
Segal, Ed .
COMPOSITIO MATHEMATICA, 2014, 150 (06) :942-978
[6]  
Enright Thomas J., 2014, SYMMETRY REPRESENTAT, V257, P121
[7]  
FULTON W, 1991, GRAD TEXTS MATH, V0129
[8]   Stable branching rules for classical symmetric pairs [J].
Howe, R ;
Tan, EC ;
Willenbring, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) :1601-1626
[9]   ON THE DERIVED CATEGORIES OF COHERENT SHEAVES ON SOME HOMOGENEOUS SPACES [J].
KAPRANOV, MM .
INVENTIONES MATHEMATICAE, 1988, 92 (03) :479-508
[10]  
Kuznetsov A., ARXIV14043143MATHAG