Thermal transport properties of single-layer black phosphorus from extensive molecular dynamics simulations

被引:33
作者
Xu, Ke [1 ]
Fan, Zheyong [2 ,3 ]
Zhang, Jicheng [1 ]
Wei, Ning [1 ]
Ala-Nissila, Tapio [3 ,4 ,5 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Bohai Univ, Sch Math & Phys, Jinzhou, Peoples R China
[3] Aalto Univ, Dept Appl Phys, QTF Ctr Excellence, FI-00076 Aalto, Finland
[4] Loughborough Univ, Ctr Interdisciplinary Math Modeling, Loughborough LE11 3TU, Leics, England
[5] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
中国国家自然科学基金; 芬兰科学院;
关键词
thermal conductivity; black phosphorus; molecular dynamics; MANY-BODY POTENTIALS; CONDUCTIVITY; FORCE;
D O I
10.1088/1361-651X/aae180
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the anisotropic in-plane thermal conductivity of suspended single-layer black phosphorus (SLBP) using three molecular dynamics (MD) based methods, including the equilibrium MD method, the nonequilibrium MD (NEMD) method, and the homogeneous NEMD (HNEMD) method. Two existing parameterizations of the Stillinger-Weber (SW) potential for SLBP are used. Consistent results are obtained for all the three methods and conflicting results from previous MD simulations are critically assessed. Among the three methods, the HNEMD method is the most and the NEMD method the least efficient. The thermal conductivity values from our MD simulations are about an order of magnitude larger than the most recent predictions obtained using the Boltzmann transport equation approach considering long-range interactions in density functional theory calculations, suggesting that the short-range SW potential might be inadequate for describing the phonon anharmonicity in SLBP.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
[Anonymous], ARXIV180500277CONDMA
[2]  
[Anonymous], 2008, STAT MECH NONEQUILIB
[3]   Kapitza thermal resistance across individual grain boundaries in graphene [J].
Azizi, Khatereh ;
Hirvonen, Petri ;
Fan, Zheyong ;
Harju, Ari ;
Elder, Ken R. ;
Ala-Nissila, Tapio ;
Allaei, S. Mehdi Vaez .
CARBON, 2017, 125 :384-390
[4]   Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon [J].
Dong, Haikuan ;
Fan, Zheyong ;
Shi, Libin ;
Harju, Ari ;
Ala-Nissila, Tapio .
PHYSICAL REVIEW B, 2018, 97 (09)
[5]   Comparison of the Green-Kubo and homogeneous non-equilibrium molecular dynamics methods for calculating thermal conductivity [J].
Dongre, B. ;
Wang, T. ;
Madsen, G. K. H. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2017, 25 (05)
[6]   HOMOGENEOUS NEMD ALGORITHM FOR THERMAL-CONDUCTIVITY - APPLICATION OF NON-CANONICAL LINEAR RESPONSE THEORY [J].
EVANS, DJ .
PHYSICS LETTERS A, 1982, 91 (09) :457-460
[7]   Efficient molecular dynamics simulations with many-body potentials on graphics processing units [J].
Fan, Zheyong ;
Chen, Wei ;
Vierimaa, Ville ;
Harju, Ari .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 218 :10-16
[8]   Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations [J].
Fan, Zheyong ;
Pereira, Luiz Felipe C. ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng ;
Donadio, Davide ;
Harju, Ari .
PHYSICAL REVIEW B, 2015, 92 (09)
[9]   Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations [J].
Fan, Zheyong ;
Siro, Topi ;
Harju, Ari .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (05) :1414-1425
[10]  
FAN ZY, 2017, PHYS REV B, V95