Cross-validatory framework for optimal parameter estimation of KPCA and KPLS models

被引:16
作者
Fu, Yujia [1 ,2 ]
Kruger, Uwe [1 ]
Li, Zhe [3 ]
Xie, Lei [4 ]
Thompson, Jillian [5 ]
Rooney, David [5 ]
Hahn, Juergen [1 ]
Yang, Huizhong [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[2] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[3] Yangzhou Univ, Sch Hydraul Energy & Power Engn, Yangzhou 225127, Jiangsu, Peoples R China
[4] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[5] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
基金
中国国家自然科学基金;
关键词
Nonlinear models; Cross-validatory framework; Optimal parameter estimation; Kernel parameter; Number of latent variable sets; Combined objective function; PARTIAL LEAST-SQUARES; FAULT-DIAGNOSIS; KERNEL; REGRESSION; SYSTEMS; SVM; PCA;
D O I
10.1016/j.chemolab.2017.06.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article revisits recently proposed methods to determine the kernel parameter and the number of latent components for identifying kernel principal component analysis (KPCA) and kernel partial least squares (KPLS) models. A detailed analysis shows that existing work is neither optimal nor efficient in determining these important parameters and may lead to erroneous estimates. In addition to that, most methods are not designed to simultaneously estimate both parameters, i.e. they require one parameter to be predetermined. To address these practically important issues, the article introduces a cross-validatory framework to optimally determine both parameters. Application studies to a simulation example and a total of three experimental or industrial data sets confirm that the cross-validatory framework outperforms existing methods and yields optimal estimations for both parameters. In sharp contrast, existing work has the potential to substantially overestimate the number of latent components and to provide inadequate estimates for the kernel parameter.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 47 条
[1]  
[Anonymous], 2015, Psychology, DOI [10.4236/psych.2015.65055, DOI 10.4236/PSYCH.2015.65055]
[2]  
Camacho J., CHEMOM INTELL LAB SY, V131, P37
[3]  
Camacho J., J CHEMOM, V26, P361
[4]   A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J].
Cao, LJ ;
Chua, KS ;
Chong, WK ;
Lee, HP ;
Gu, QM .
NEUROCOMPUTING, 2003, 55 (1-2) :321-336
[5]   Time series forecasting based on wavelet KPCA and support vector machine [J].
Chen, Fei ;
Han, Chongzhao .
2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, :1487-1491
[6]   Fault identification for process monitoring using kernel principal component analysis [J].
Cho, JH ;
Lee, JM ;
Choi, SW ;
Lee, D ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :279-288
[7]   Thermodynamic model and Raman spectra of CaO-P2O5 glasses [J].
Chromcikova, Maria ;
Liska, Marek ;
Zemanova, Vladimira ;
Plsko, Alfonz ;
Hruska, Branislav ;
Gavenda, Tadeas .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 121 (01) :269-274
[8]   Performance modeling of centrifugal compressor using kernel partial least squares [J].
Chu, Fei ;
Wang, Fuli ;
Wang, Xiaogang ;
Zhang, Shuning .
APPLIED THERMAL ENGINEERING, 2012, 44 :90-99
[9]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[10]  
Cristianini N, 2006, STUD FUZZ SOFT COMP, V194, P205