A generalized framework for modelling ordinal data

被引:27
|
作者
Iannario, Maria [1 ]
Piccolo, Domenico [1 ]
机构
[1] Univ Naples Federico II, Dept Polit Sci, Via Leopoldo Rodino 22, I-80138 Naples, Italy
关键词
Ordinal data; Rating survey; CUB models; Shelter choices; GECUB models; ODDS MODELS;
D O I
10.1007/s10260-015-0316-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In several applied disciplines, as Economics, Marketing, Business, Sociology, Psychology, Political science, Environmental research and Medicine, it is common to collect data in the form of ordered categorical observations. In this paper, we introduce a class of models based on mixtures of discrete random variables in order to specify a general framework for the statistical analysis of this kind of data. The structure of these models allows the interpretation of the final response as related to feeling, uncertainty and a possible shelter option and the expression of the relationship among these components and subjects' covariates. Such a model may be effectively estimated by maximum likelihood methods leading to asymptotically efficient inference. We present a simulation experiment and discuss a real case study to check the consistency and the usefulness of the approach. Some final considerations conclude the paper.
引用
收藏
页码:163 / 189
页数:27
相关论文
共 50 条
  • [21] Multidimensional polarization for ordinal data
    Martyna Kobus
    Radosław Kurek
    The Journal of Economic Inequality, 2019, 17 : 301 - 317
  • [22] DATA DIMENSIONALITY REDUCTION METHODS FOR ORDINAL DATA
    Prokop, Martin
    Rezankova, Hana
    INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2011, : 523 - 533
  • [23] Archetypal analysis for ordinal data
    Fernandez, Daniel
    Epifanio, Irene
    McMillan, Louise Fastier
    INFORMATION SCIENCES, 2021, 579 : 281 - 292
  • [24] ON THE USE OF ORDINAL DATA IN DATA ENVELOPMENT ANALYSIS
    COOK, WD
    KRESS, M
    SEIFORD, LM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1993, 44 (02) : 133 - 140
  • [25] A log-linear approach for modelling ordinal paired comparison data on motives to start a PhD programme
    Dittrich, R
    Hatzinger, R
    Katzenbeisser, W
    STATISTICAL MODELLING, 2004, 4 (03) : 181 - 193
  • [26] Ordinal Data Models for No-Opinion Responses in Attitude Survey
    Iannario, Maria
    Manisera, Marica
    Piccolo, Domenico
    Zuccolotto, Paola
    SOCIOLOGICAL METHODS & RESEARCH, 2020, 49 (01) : 250 - 276
  • [27] Estimating intracluster correlation for ordinal data
    Langworthy, Benjamin W.
    Hou, Zhaoxun
    Curhan, Gary C.
    Curhan, Sharon G.
    Wang, Molin
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (08) : 1609 - 1617
  • [28] Fuzzy Data Envelopment Analysis with Ordinal and Interval Data
    Izadikhah, Mohammad
    Roostaee, Razieh
    Emrouznejad, Ali
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2021, 29 (03) : 385 - 410
  • [29] TRANSFORMATION AND CLASSIFICATION OF ORDINAL SURVEY DATA
    Sadh, Roopam
    Kumar, Rajeev
    COMPUTER SCIENCE-AGH, 2023, 24 (02): : 211 - 230
  • [30] Ordinalysis: Interpretability of multidimensional ordinal data
    Zine-El-Abidine, Mouad
    Dutagaci, Helin
    Rousseau, David
    SOFTWAREX, 2023, 22