The strong law of large numbers for dependent random variables

被引:11
作者
Kuczmaszewska, A [1 ]
机构
[1] Lublin Univ Technol, Dept Appl Math, PL-20618 Lublin, Poland
关键词
strong law of large numbers; negatively associated random variables; Q-mixing sequence; Hayek-Renyi-type maximal inequality;
D O I
10.1016/j.spl.2005.04.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes two results for the strong law of large numbers under negative association and (Q)-mixing. In their proofs, a Hdyek-Renyi-type maximal inequality is employed. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 9 条
[1]   NOTE ON SOME STRONG LAWS OF LARGE NUMBERS [J].
CHUNG, KL .
AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (01) :189-192
[2]   ASSOCIATION OF RANDOM VARIABLES WITH APPLICATIONS [J].
ESARY, JD ;
PROSCHAN, F ;
WALKUP, DW .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1466-&
[3]  
FAZEKAS I, 2000, TEOR VEROYA PRIMEN, V45, P569
[4]  
HAYEK J, 1955, ACTA MATH ACAD SCI H, V6, P281
[5]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[6]   A NOTE ON THE ALMOST SURE CONVERGENCE OF SUMS OF NEGATIVELY DEPENDENT RANDOM-VARIABLES [J].
MATULA, P .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (03) :209-213
[7]  
Revesz P., 1968, LAWS LARGE NUMBERS
[8]   MAXIMAL INEQUALITIES FOR PARTIAL-SUMS OF RHO-MIXING SEQUENCES [J].
SHAO, QM .
ANNALS OF PROBABILITY, 1995, 23 (02) :948-965