Unpaired font family synthesis using conditional generative adversarial networks

被引:13
|
作者
Ul Hassan, Ammar [1 ]
Ahmed, Hammad [1 ]
Choi, Jaeyoung [1 ]
机构
[1] Soongsil Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
Font generation; Generative adversarial networks; Style transfer; Unsupervised image-to-image translation; IMAGE SYNTHESIS;
D O I
10.1016/j.knosys.2021.107304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic font image synthesis has been an extremely active topic in recent years. Various deep learning-based approaches have been proposed to tackle this font synthesis task by considering it as an image-to-image translation problem in a supervised setting. However, all such approaches mainly focus on one-to-one font mapping, i.e., synthesizing a single font style, making it difficult to handle more practical problems such as the font family synthesis, which is a one-to-many mapping problem. Moreover, this font family synthesis is more challenging because it is an unsupervised image-to-image translation problem, i.e., no paired dataset is available during training. To address this font family synthesis problem, we propose a method that utilizes a single generator to conditionally produce various font family styles to form a font family. To the best of our knowledge, our proposed method is the first to synthesize a font family (multiple font styles belonging to a font), instead of synthesizing a single font style. More specifically, our method is trained to learn a font family by conditioning on various styles, e.g., normal, bold, italic, bold-italic, etc. After training, given an unobserved single font style (normal style font as an input), our method can successfully synthesize the remaining styles (e.g., bold, italic, bold-italic, etc.) to complete the font family. Qualitative and quantitative experiments were conducted to demonstrate the effectiveness of our proposed method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Font Creation Using Class Discriminative Deep Convolutional Generative Adversarial Networks
    Abe, Kotaro
    Iwana, Brian Kenji
    Holmer, Viktor Gosta
    Uchida, Seiichi
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 232 - 237
  • [22] The Defense of Adversarial Example with Conditional Generative Adversarial Networks
    Yu, Fangchao
    Wang, Li
    Fang, Xianjin
    Zhang, Youwen
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020
  • [23] Surgical Tool Segmentation Using Generative Adversarial Networks With Unpaired Training Data
    Zhang, Zhongkai
    Rosa, Benoit
    Nageotte, Florent
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6266 - 6273
  • [24] Interpreting CNN predictions using conditional Generative Adversarial Networks
    Guna, R. T. Akash
    Sikha, O. K.
    Benitez, Raul
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [25] Vein Pattern Visualisation using Conditional Generative Adversarial Networks
    Keivanmarz, Ali
    Sharifzadeh, Hamid
    Fleming, Rachel
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1310 - 1316
  • [26] Fringe pattern normalization using conditional Generative Adversarial Networks
    Ram, Viren S.
    Gannavarpu, Rajshekhar
    Optik, 2024, 313
  • [27] Airfoil Inverse Design using Conditional Generative Adversarial Networks
    Tan, Xavier
    Manna, Dai
    Chattoraj, Joyjit
    Liu Yong
    Xu Xinxing
    Ha, Dao My
    Yang Feng
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 143 - 148
  • [28] Spatial interpolation using conditional generative adversarial neural networks
    Zhu, Di
    Cheng, Ximeng
    Zhang, Fan
    Yao, Xin
    Gao, Yong
    Liu, Yu
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (04) : 735 - 758
  • [29] Using Generative Adversarial Networks for Conditional Creation of Anime Posters
    Sankalpa, Donthi
    Ramesh, Jayroop
    Zualkernan, Imran
    Proceedings of the 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2022, 2022, : 197 - 203
  • [30] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)