Network anomaly detection using nonextensive entropy

被引:37
|
作者
Ziviani, Artur
Gomes, Antonio Tadeu A.
Monsores, Marcelo L.
Rodrigues, Paulo S. S.
机构
关键词
network anomaly detection;
D O I
10.1109/LCOMM.2007.070761
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Detection is a crucial step towards efficiently diagnosing network traffic anomalies within an Autonomous System (AS). We propose the adoption of nonextensive entropy - a one-parameter generalization of Shannon entropy - to detect anomalies in network traffic within an AS. Experimental results show that our approach based on nonextensive entropy outperforms previous ones based on classical entropy while providing enhanced flexibility, which is enabled by the possibility of fine-tuning the sensitivity of the detection mechanism.
引用
收藏
页码:1034 / 1036
页数:3
相关论文
共 50 条
  • [21] Network Anomaly Detection Using a Graph Neural Network
    Kisanga, Patrice
    Woungang, Isaac
    Traore, Issa
    Carvalho, Glaucio H. S.
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 61 - 65
  • [22] Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection
    Shen, Haocheng
    Chen, Jingkun
    Wang, Ruixuan
    Zhang, Jianguo
    IEEE ACCESS, 2020, 8 (08): : 133051 - 133062
  • [23] Entropy-based Robust PCA for Communication Network Anomaly Detection
    Liu, Duo
    Lung, Chung-Horng
    Seddigh, Nabil
    Nandy, Biswajit
    2014 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2014, : 171 - 175
  • [24] Batch quadratic programming network with maximum entropy constraint for anomaly detection
    Zhou, Di
    Chen, Weigang
    Guo, Chunsheng
    Zhang, Mark
    IET COMPUTER VISION, 2022, 16 (03) : 230 - 240
  • [25] Machine Learning Enhanced Entropy-Based Network Anomaly Detection
    Timcenko, Valentina
    Gajin, Slavko
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2021, 21 (04) : 51 - 60
  • [26] Anomaly Detection for User Behavior in Wireless Network Based on Cross Entropy
    Zhang, Chunxiao
    Hu, Yihong
    Zhu, Xinning
    Guo, Zhigang
    Huang, Junfei
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1258 - 1263
  • [27] Network anomaly detection using neural networks
    Globa, L. S.
    Demidova, Y. A.
    Ternovoy, M. Y.
    2006 16TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 412 - +
  • [28] USING R FOR ANOMALY DETECTION IN NETWORK TRAFFIC
    Hock, Denis
    Kappes, Martin
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INTERNET TECHNOLOGIES AND APPLICATIONS (ITA 13), 2013, : 98 - 105
  • [29] Network Anomaly Detection using Soft Computing
    Srinoy, Surat
    Kurutach, Werasak
    Chimphlee, Witcha
    Chimphlee, Siriporn
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 9, 2005, 9 : 140 - 144
  • [30] Network Anomaly Detection Using Federated Learning
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,