Efficient Penalized Estimation for Linear Regression Model

被引:0
作者
Mao, Guangyu [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China
关键词
GMM; LASSO; Oracle Property; Penalized Least Squares; SCAD; Shrinkage; VARIABLE SELECTION; HETEROSKEDASTICITY; LIKELIHOOD; REGULARIZATION; LASSO;
D O I
10.1080/03610926.2012.763094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops new penalized estimation for linear regression model. We prove that the new method, which is referred to as efficient penalized estimation, is selection consistent, and more asymptotically efficient than the original one. Besides, we construct a new selector called efficient BIC Selector to tune the regularization parameter in the new estimation, which is shown to be consistent. Our simulation results suggest that the new method may bring significant improvement relative to the original penalized estimation. In addition, we employ a real data set to illustrate the application of the efficient penalized estimation.
引用
收藏
页码:1436 / 1449
页数:14
相关论文
共 50 条
[31]   Double Penalized Quantile Regression for the Linear Mixed Effects Model [J].
Hanfang Li ;
Yuan Liu ;
Youxi Luo .
Journal of Systems Science and Complexity, 2020, 33 :2080-2102
[32]   Application of penalized linear regression methods to the selection of environmental enteropathy biomarkers [J].
Lu, Miao ;
Zhou, Jianhui ;
Naylor, Caitlin ;
Kirkpatrick, Beth D. ;
Haque, Rashidul ;
Petri, William A., Jr. ;
Ma, Jennie Z. .
BIOMARKER RESEARCH, 2017, 5
[33]   Double Penalized Quantile Regression for the Linear Mixed Effects Model [J].
Li, Hanfang ;
Liu, Yuan ;
Luo, Youxi .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (06) :2080-2102
[34]   LORSEN: Fast and Efficient eQTL Mapping With Low Rank Penalized Regression [J].
Gao, Cheng ;
Wei, Hairong ;
Zhang, Kui .
FRONTIERS IN GENETICS, 2021, 12
[35]   An efficient algorithm for the non-convex penalized multinomial logistic regression [J].
Kwon, Sunghoon ;
Kim, Dongshin ;
Lee, Sangin .
COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) :129-140
[36]   Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model [J].
Alshaybawee, Taha ;
Alhamzawi, Rahim ;
Midi, Habshah ;
Allyas, Intisar Ibrahim .
JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) :2643-2657
[37]   Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions [J].
Liu, Hongcheng ;
Yao, Tao ;
Li, Runze ;
Ye, Yinyu .
MATHEMATICAL PROGRAMMING, 2017, 166 (1-2) :207-240
[38]   Penalized weighted composite quantile regression in the linear regression model with heavy-tailed auto correlated errors [J].
Jiang, Yunlu ;
Li, Hong .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) :531-543
[39]   Estimation of sensitivity coefficient based on lasso-type penalized linear regression [J].
Katano, Ryota ;
Endo, Tomohiro ;
Yamamoto, Akio ;
Tsujimoto, Kazufumi .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2018, 55 (10) :1099-1109
[40]   RETRACTED: Multi-model penalized regression (Retracted Article) [J].
Wendelberger, Laura J. ;
Reich, Brian J. ;
Wilson, Alyson G. .
STATISTICAL ANALYSIS AND DATA MINING-AN ASA DATA SCIENCE JOURNAL, 2021, 14 (06) :698-722