Efficient Penalized Estimation for Linear Regression Model

被引:0
作者
Mao, Guangyu [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Econ & Management, Beijing, Peoples R China
关键词
GMM; LASSO; Oracle Property; Penalized Least Squares; SCAD; Shrinkage; VARIABLE SELECTION; HETEROSKEDASTICITY; LIKELIHOOD; REGULARIZATION; LASSO;
D O I
10.1080/03610926.2012.763094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops new penalized estimation for linear regression model. We prove that the new method, which is referred to as efficient penalized estimation, is selection consistent, and more asymptotically efficient than the original one. Besides, we construct a new selector called efficient BIC Selector to tune the regularization parameter in the new estimation, which is shown to be consistent. Our simulation results suggest that the new method may bring significant improvement relative to the original penalized estimation. In addition, we employ a real data set to illustrate the application of the efficient penalized estimation.
引用
收藏
页码:1436 / 1449
页数:14
相关论文
共 50 条
[21]   Penalized Sparse Covariance Regression with High Dimensional Covariates [J].
Gao, Yuan ;
Zhang, Zhiyuan ;
Cai, Zhanrui ;
Zhu, Xuening ;
Zou, Tao ;
Wang, Hansheng .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2025, 43 (03) :615-626
[22]   SCAD penalized rank regression with a diverging number of parameters [J].
Yang, Hu ;
Guo, Chaohui ;
Lv, Jing .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 :321-333
[23]   Modified Cross-Validation for Penalized High-Dimensional Linear Regression Models [J].
Yu, Yi ;
Feng, Yang .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) :1009-1027
[24]   Sparse factor regression via penalized maximum likelihood estimation [J].
Hirose, Kei ;
Imada, Miyuki .
STATISTICAL PAPERS, 2018, 59 (02) :633-662
[25]   Compressed and Penalized Linear Regression [J].
Homrighausen, Darren ;
McDonald, Daniel J. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) :309-322
[26]   Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data [J].
Wang, Kangning ;
Sun, Xiaofei .
STATISTICAL PAPERS, 2020, 61 (03) :967-995
[27]   Autocovariance Function Estimation via Penalized Regression [J].
Liao, Lina ;
Park, Cheolwoo ;
Hannig, Jan ;
Kang, Kee-Hoon .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) :1041-1056
[28]   Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression [J].
Su, Z. ;
Zhu, G. ;
Chen, X. ;
Yang, Y. .
BIOMETRIKA, 2016, 103 (03) :579-593
[29]   Penalized empirical likelihood for the sparse Cox regression model [J].
Wang, Dongliang ;
Wu, Tong Tong ;
Zhao, Yichuan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 201 :71-85
[30]   ADMM for High-Dimensional Sparse Penalized Quantile Regression [J].
Gu, Yuwen ;
Fan, Jun ;
Kong, Lingchen ;
Ma, Shiqian ;
Zou, Hui .
TECHNOMETRICS, 2018, 60 (03) :319-331