Gene Selection in Cancer Classification Using Sparse Logistic Regression with L1/2 Regularization

被引:16
|
作者
Wu, Shengbing [1 ]
Jiang, Hongkun [1 ]
Shen, Haiwei [1 ]
Yang, Ziyi [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 09期
关键词
gene selection; cancer classification; regularized logistic regression; L-1/2; regularization; CELL LUNG-CANCER; VARIABLE SELECTION; EGFR MUTATION; LASSO;
D O I
10.3390/app8091569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, gene selection for cancer classification based on the expression of a small number of gene biomarkers has been the subject of much research in genetics and molecular biology. The successful identification of gene biomarkers will help in the classification of different types of cancer and improve the prediction accuracy. Recently, regularized logistic regression using the L-1 regularization has been successfully applied in high-dimensional cancer classification to tackle both the estimation of gene coefficients and the simultaneous performance of gene selection. However, the L-1 has a biased gene selection and dose not have the oracle property. To address these problems, we investigate L-1/2 regularized logistic regression for gene selection in cancer classification. Experimental results on three DNA microarray datasets demonstrate that our proposed method outperforms other commonly used sparse methods (L-1 and L-EN) in terms of classification performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] RECURRENT NEURAL NETWORK WITH L1/2 REGULARIZATION FOR REGRESSION AND MULTICLASS CLASSIFICATION PROBLEMS
    Li, Lin
    Fan, Qinwei
    Zhou, Li
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [22] Sparsity regularization enhances gene selection and leukemia subtype classification via logistic regression
    Mahmood, Nozad Hussein
    Kadir, Dler Hussein
    LEUKEMIA RESEARCH, 2025, 150
  • [23] Variable selection for functional regression models via the L1 regularization
    Matsui, Hidetoshi
    Konishi, Sadanori
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3304 - 3310
  • [24] Application of L1/2 regularization logistic method in heart disease diagnosis
    Zhang, Bowen
    Chai, Hua
    Yang, Ziyi
    Liang, Yong
    Chu, Gejin
    Liu, Xiaoying
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 3447 - 3454
  • [25] A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification
    Zakariya Yahya Algamal
    Muhammad Hisyam Lee
    Advances in Data Analysis and Classification, 2019, 13 : 753 - 771
  • [26] Sparse SAR imaging based on L1/2 regularization
    ZENG JinShan
    ScienceChina(InformationSciences), 2012, 55 (08) : 1755 - 1775
  • [27] Sparse SAR imaging based on L1/2 regularization
    JinShan Zeng
    Jian Fang
    ZongBen Xu
    Science China Information Sciences, 2012, 55 : 1755 - 1775
  • [28] Some sharp performance bounds for least squares regression with L1 regularization
    Zhang, Tong
    ANNALS OF STATISTICS, 2009, 37 (5A): : 2109 - 2144
  • [29] Iterative L1/2 Regularization Algorithm for Variable Selection in the Cox Proportional Hazards Model
    Liu, Cheng
    Liang, Yong
    Luan, Xin-Ze
    Leung, Kwong-Sak
    Chan, Tak-Ming
    Xu, Zong-Ben
    Zhang, Hai
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT II, 2012, 7332 : 11 - 17
  • [30] SPARSE REPRESENTATION LEARNING OF DATA BY AUTOENCODERS WITH L1/2 REGULARIZATION
    Li, F.
    Zurada, J. M.
    Wu, W.
    NEURAL NETWORK WORLD, 2018, 28 (02) : 133 - 147