Sequential Fourier-Feynman transform, convolution and first variation

被引:0
|
作者
Chang, K. S. [1 ]
Cho, D. H. [2 ]
Kim, B. S. [3 ]
Song, T. S. [4 ]
Yoo, I. [5 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Kyonggi Univ, Dept Math, Suwon 443760, South Korea
[3] Seoul Natl Univ Technol, Sch Liberal Arts, Seoul 139743, South Korea
[4] Mokwon Univ, Dept Comp Engn, Taejon 302729, South Korea
[5] Yonsei Univ, Dept Math, Wonju 220710, South Korea
关键词
sequential Feynman integral; sequential Fourier-Feynman transform; convolution; translation theorem; parseval's relation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cameron and Storvick introduced the concept of a sequential Fourier- Feynman transform and established the existence of this transform for functionals in a Banach algebra (S) over cap of bounded functionals on classical Wiener space. In this paper we investigate various relationships between the sequential Fourier-Feynman transform and the convolution product for functionals which need not be bounded or continuous. Also we study the relationships involving this transform and the first variation.
引用
收藏
页码:1819 / 1838
页数:20
相关论文
共 50 条
  • [41] General Steerable Two-sided Clifford Fourier Transform, Convolution and Mustard Convolution
    Hitzer, Eckhard
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2215 - 2234
  • [42] Optimal extension of the Fourier transform and convolution operator on compact groups
    Kumar, Manoj
    Kumar, N. Shravan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (02): : 251 - 265
  • [43] Comparison of Fast Fourier Transform and Convolution in Wavelength Scanning Interferometry
    Muhamedsalih, H.
    Jiang, X.
    Gao, F.
    OPTICAL MEASUREMENT SYSTEMS FOR INDUSTRIAL INSPECTION VII, 2011, 8082
  • [44] Convolution and the Fourier-Wiener transform on abstract Wiener space
    Yoo, I
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) : 1577 - 1587
  • [45] Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures
    Srivastava, Hari M.
    Lone, Waseem Z.
    Shah, Firdous A.
    Zayed, Ahmed, I
    ENTROPY, 2022, 24 (10)
  • [46] Block convolution using discrete trigonometric transforms and discrete Fourier transform
    Suresh, K.
    Sreenivas, T. V.
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 469 - 472
  • [47] Distributional Fourier transform and convolution associated to Chebli-Trimeche hypergroups
    Betancor, JJ
    Betancor, JD
    Méndez, JM
    MONATSHEFTE FUR MATHEMATIK, 2002, 134 (04): : 265 - 286
  • [48] Fast convolution and Fast Fourier Transform under interval and fuzzy uncertainty
    Liu, Guoqing
    Kreinovich, Vladik
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (01) : 63 - 76
  • [49] Rigorous Interpretation of Engineering Formulae for the Convolution and the Fourier Transform Based on the Generalized Integral
    Juric, Zeljko
    Siljak, Harun
    IEEE ACCESS, 2022, 10 : 29451 - 29460
  • [50] Convolution and Fourier transform over the spaces K′p,k, p⟩1
    Sohn, BK
    Pahk, DH
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (02) : 681 - 694